SymbolicFieldModel¶
- class persalys.SymbolicFieldModel(*args)¶
- Create a physical model defined by analytical formulas and a mesh. - Parameters:
 - Methods - addInput(input)- Add an input variable. - addOutput(output)- Add an output variable. - Remove all the input variables. - Remove all the output variables. - exportStandalonePythonScript(fileName)- Export the model into a Python script. - Accessor to the object's name. - Copula accessor. - Distribution accessor. - Evaluation time accessor. - getFormula(outputName)- Output formula accessor. - Formulas accessor. - getFunction(*args)- Accessor to the underlying function. - getInputByName(*args)- Input variable accessor. - Number of input variables accessor. - Input variable names accessor. - Input random vector accessor. - Input variables accessor. - Mesh model accessor. - getName()- Accessor to the object's name. - getOutputByName(*args)- Output variable accessor. - Number of output variables accessor. - Output variable names accessor. - getOutputRandomVector(outputNames)- Output random vector accessor. - Output variables accessor. - getPointToFieldFunction(*args)- Accessor to the underlying function. - Number of concurrent processes. - Python script accessor. - getRestrictedFunction(*args)- Accessor to the function restricted to its stochastic inputs. - getRestrictedPointToFieldFunction(outputNames)- Accessor to the field function restricted to its stochastic inputs. - Accessor to the selected outputs names. - Accessor to the names of the stochastic input variables. - hasInputNamed(inputName)- Check if an input has the given name. - hasMesh()- Whether the model has a mesh. - hasName()- Test if the object is named. - hasOutputNamed(outputName)- Check if an output has the given name. - Whether it contains stochastic variables. - Whether the evaluations of the model are parallelized. - isValid()- Whether it is valid. - removeInput(inputName)- Remove an input variable. - removeOutput(outputName)- Remove an output variable. - selectOutput(outputName, selected)- Select output. - setCopula(inputNames, copula)- Copula accessor. - setDistribution(inputName, distribution)- Input distribution accessor. - setDistributionParametersType(inputName, ...)- Input distribution parameter type accessor. - setEvalTime(evalTime)- Evaluation time accessor. - setFiniteDifferenceStep(inputName, step)- Finite difference step accessor. - setFormula(outputName, formula)- Output formula accessor. - setFormulas(formulas)- Formulas accessor. - setInputDescription(inputName, description)- Input description accessor. - setInputName(inputName, newName)- Input variable name accessor. - setInputStochastic(inputName, stoch)- Whether the input variable is stochastic. - setInputValue(inputName, value)- Input variable value accessor. - setInputs(inputs)- Input variables accessor. - setMeshModel(meshModel)- Mesh model accessor. - setName(name)- Accessor to the object's name. - setOutputDescription(outputName, description)- Output description accessor. - setOutputName(outputName, newName)- Output variable name accessor. - setOutputValue(outputName, value)- Output variable name accessor. - setOutputs(outputs)- Output variables accessor. - setParallel(flag)- Whether the evaluations of the model are parallelized. - setProcessNumber(processNumber)- Number of concurrent processes. - Examples - >>> import openturns as ot >>> import persalys - Create the mesh model: - >>> meshModel = persalys.GridMeshModel([persalys.Variable('x', 'aDescription')], ot.Interval(0., 12.), [10]) - Create the model: - >>> z0 = persalys.Input('z0', 100) >>> v0 = persalys.Input('v0', 55) >>> m = persalys.Input('m', 80) >>> c = persalys.Input('c', 15) >>> z = persalys.Output('z') >>> formula = ['max(0, z0 + (m * 9.81 / c) * x + (m / c) * (v0 - (m * 9.81 / c)) * (1 - exp(-x * c / m)))'] >>> model = persalys.SymbolicFieldModel('model', meshModel, [z0, v0, m, c], [z], formula) - >>> y = model.getPointToFieldFunction()([100, 55, 80, 15]) - __init__(*args)¶
 - clearInputs()¶
- Remove all the input variables. 
 - clearOutputs()¶
- Remove all the output variables. 
 - exportStandalonePythonScript(fileName)¶
- Export the model into a Python script. - In the case of metamodels the script only depends on OpenTURNS and is meant to be used out of Persalys. - Parameters:
- fileNamestr
- Path of the exported script 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCopula()¶
- Copula accessor. - Parameters:
- copulaopenturns.Distribution
- The copula 
 
- copula
 
 - getDistribution()¶
- Distribution accessor. - Parameters:
- Distributionopenturns.JointDistribution
- The composed distribution (marginals and dependence) 
 
- Distribution
 
 - getEvalTime()¶
- Evaluation time accessor. - Returns:
- evalTimefloat
- Evaluation time 
 
 
 - getFormula(outputName)¶
- Output formula accessor. - Parameters:
- namestr
- Variable name 
 
- Returns:
- formulastr
- Formula text 
 
 
 - getFormulas()¶
- Formulas accessor. - Returns:
- formulasopenturns.Description
- Output formulas 
 
- formulas
 
 - getFunction(*args)¶
- Accessor to the underlying function. - Parameters:
- outputNamessequence of str
- Names of the outputs to be evaluated (optional) 
 
- Returns:
- functionopenturns.Function
- Function evaluating the outputs 
 
- function
 
 - getInputByName(*args)¶
- Input variable accessor. - Parameters:
- namestr
- Variable name 
 
- Returns:
- inputInput
- Input variable 
 
- input
 
 - getInputDimension()¶
- Number of input variables accessor. - Returns:
- dimensionint
- Number of input variables 
 
 
 - getInputNames()¶
- Input variable names accessor. - Returns:
- namesopenturns.Description
- Input variable names 
 
- names
 
 - getInputRandomVector()¶
- Input random vector accessor. - Returns:
- namesopenturns.RandomVector
- Input random vector 
 
- names
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOutputByName(*args)¶
- Output variable accessor. - Parameters:
- namestr
- Variable name 
 
- Returns:
- inputOutput
- Output variable 
 
- input
 
 - getOutputDimension()¶
- Number of output variables accessor. - Returns:
- dimensionint
- Number of output variables 
 
 
 - getOutputNames()¶
- Output variable names accessor. - Returns:
- namesopenturns.Description
- Output variable names 
 
- names
 
 - getOutputRandomVector(outputNames)¶
- Output random vector accessor. - Returns:
- namesopenturns.RandomVector
- Output random vector 
 
- names
 
 - getPointToFieldFunction(*args)¶
- Accessor to the underlying function. - Parameters:
- outputNamessequence of str
- Names of the outputs to be evaluated (optional) 
 
- Returns:
- functionopenturns.PointToFieldFunction
- Function evaluating the outputs along the mesh nodes 
 
- function
 
 - getProcessNumber()¶
- Number of concurrent processes. - Returns:
- process_numberint
- Maximum number of processes 
 
 
 - getPythonScript()¶
- Python script accessor. - Returns:
- scriptstr
- Python script to replay the model 
 
 
 - getRestrictedFunction(*args)¶
- Accessor to the function restricted to its stochastic inputs. - Parameters:
- outputNamessequence of str
- Output variables (optional) 
 
- Returns:
- restrictedopenturns.Function
- Stochastic function 
 
- restricted
 
 - getRestrictedPointToFieldFunction(outputNames)¶
- Accessor to the field function restricted to its stochastic inputs. - Parameters:
- outputNamessequence of str
- Output variables (optional) 
 
- Returns:
- restrictedopenturns.PointToFieldFunction
- Stochastic field function (for model with mesh) 
 
- restricted
 
 - getSelectedOutputsNames()¶
- Accessor to the selected outputs names. - Returns:
- namesopenturns.Description
- Selected outputs names 
 
- names
 
 - getStochasticInputNames()¶
- Accessor to the names of the stochastic input variables. - Returns:
- namesopenturns.Description
- Names of the stochastic input variables 
 
- names
 
 - hasInputNamed(inputName)¶
- Check if an input has the given name. - Parameters:
- namestr
- Variable name 
 
- Returns:
- hasbool
- Whether an input has the given name 
 
 
 - hasMesh()¶
- Whether the model has a mesh. - Returns:
- hasMeshbool
- Whether the model has a mesh 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasOutputNamed(outputName)¶
- Check if an output has the given name. - Parameters:
- namestr
- Variable name 
 
- Returns:
- hasbool
- Whether an output has the given name 
 
 
 - hasStochasticInputs()¶
- Whether it contains stochastic variables. - Returns:
- hasbool
- Whether it contains stochastic variables 
 
 
 - isParallel()¶
- Whether the evaluations of the model are parallelized. - Returns:
- isParallelbool
- Whether the evaluations of the model are parallelized (available only for the Python model) 
 
 
 - isValid()¶
- Whether it is valid. - Returns:
- isValidbool
- Whether it is valid 
 
 
 - removeInput(inputName)¶
- Remove an input variable. - Parameters:
- namestr
- Variable name 
 
 
 - removeOutput(outputName)¶
- Remove an output variable. - Parameters:
- namestr
- Variable name 
 
 
 - selectOutput(outputName, selected)¶
- Select output. - Parameters:
- namestr
- Output name 
- isSelectedbool
- Whether it is selected 
 
 
 - setCopula(inputNames, copula)¶
- Copula accessor. - Parameters:
- copulaopenturns.Distribution
- The copula 
 
- copula
 
 - setDistribution(inputName, distribution)¶
- Input distribution accessor. - Parameters:
- namestr
- Variable name 
- distributionopenturns.Distribution
- Variable distribution 
 
 
 - setDistributionParametersType(inputName, distributionParametersType)¶
- Input distribution parameter type accessor. - Parameters:
- namestr
- Variable name 
- parametersTypeint
- Distribution parameter type accessor 
 
 
 - setEvalTime(evalTime)¶
- Evaluation time accessor. - Parameters:
- evalTimefloat
- Evaluation time 
 
 
 - setFiniteDifferenceStep(inputName, step)¶
- Finite difference step accessor. - Parameters:
- namestr
- Variable name 
- stepfloat
- Finite difference step used to define the gradient of the model’s function 
 
 
 - setFormula(outputName, formula)¶
- Output formula accessor. - Parameters:
- namestr
- Variable name 
- formulastr
- Formula text 
 
 
 - setFormulas(formulas)¶
- Formulas accessor. - Parameters:
- formulassequence of str
- Output formulas 
 
 
 - setInputDescription(inputName, description)¶
- Input description accessor. - Parameters:
- namestr
- Variable name 
- descriptionstr
- Description text 
 
 
 - setInputName(inputName, newName)¶
- Input variable name accessor. - Parameters:
- namestr
- Variable name 
- newNamestr
- New name 
 
 
 - setInputStochastic(inputName, stoch)¶
- Whether the input variable is stochastic. - Parameters:
- namestr
- Variable name 
- isStochasticbool
- Whether the input variable is stochastic 
 
 
 - setInputValue(inputName, value)¶
- Input variable value accessor. - Parameters:
- namestr
- Variable name 
- valuefloat
- New value 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setOutputDescription(outputName, description)¶
- Output description accessor. - Parameters:
- namestr
- Variable name 
- descriptionstr
- Description text 
 
 
 - setOutputName(outputName, newName)¶
- Output variable name accessor. - Parameters:
- namestr
- Variable name 
- newNamestr
- New name 
 
 
 - setOutputValue(outputName, value)¶
- Output variable name accessor. - Parameters:
- namestr
- Variable name 
- valuefloat
- New value 
 
 
 - setOutputs(outputs)¶
- Output variables accessor. - Parameters:
- outputssequence of Output
- Output variables 
 
- outputssequence of 
 
 - setParallel(flag)¶
- Whether the evaluations of the model are parallelized. - Parameters:
- isParallelbool
- Whether the evaluations of the model are parallelized 
 
 - Notes - This is only implemented for the Python model. Also, on Windows platforms, ProcessPoolExecutor startup time being much higher, you may want to evaluate enough points in batch rather than many small blocks. Refer to the setBlockSize method of the various algorithms. 
 - setProcessNumber(processNumber)¶
- Number of concurrent processes. - Parameters:
- process_numberint
- Maximum number of processes 
 
 
 
