Input¶
- class persalys.Input(*args)¶
Create an input variable.
Represents an input variable.
- Parameters:
- namestr
Name
- valuefloat
Default value
- distribution
Distribution Associated distribution
- descriptionstr
Description text (optional)
Methods
Accessor to the object's name.
Description accessor.
Distribution accessor.
Distribution parameters type accessor.
Finite difference step accessor.
getName()Accessor to the object's name.
Python script accessor.
getUnit()Unit accessor.
getValue()Default value accessor.
hasName()Test if the object is named.
Whether the variable is stochastic.
setDescription(description)Description accessor.
setDistribution(distribution)Distribution accessor.
Distribution parameters type accessor.
setFiniteDifferenceStep(step)Finite difference step accessor.
setName(name)Accessor to the object's name.
setStochastic(stoch)Whether the variable is stochastic.
setUnit(unit)Unit accessor.
setValue(value)Default value accessor.
Examples
>>> import openturns as ot >>> import persalys >>> F = persalys.Input('F', 0., ot.Normal(75000., 5000.), 'Traction load') >>> R = persalys.Input('R', ot.Normal(75000., 5000.)) >>> S = persalys.Input('S', 10.5)
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getDescription()¶
Description accessor.
- Returns:
- description
openturns.Description Text describing the variable
- description
- getDistribution()¶
Distribution accessor.
- Returns:
- distribution
openturns.Distribution Distribution associated with the variable
- distribution
- getDistributionParametersType()¶
Distribution parameters type accessor.
- Returns:
- parametersTypeint
Distribution parameters index
- getFiniteDifferenceStep()¶
Finite difference step accessor.
- Returns:
- stepfloat
Finite difference step used to define the gradient of the model’s function
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getPythonScript()¶
Python script accessor.
- Returns:
- scriptstr
Python script to replay the analysis
- getUnit()¶
Unit accessor.
- Returns:
- unitstr
Physical quantity unit, if applicable
- getValue()¶
Default value accessor.
- Returns:
- valuefloat
Default value
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- isStochastic()¶
Whether the variable is stochastic.
- Returns:
- isStochasticbool
Whether the variable is stochastic
- setDescription(description)¶
Description accessor.
- Parameters:
- descriptionstr
Text describing the variable
- setDistribution(distribution)¶
Distribution accessor.
- Parameters:
- distribution
openturns.Distribution Distribution associated with the variable
- distribution
- setDistributionParametersType(distributionParametersType)¶
Distribution parameters type accessor.
- Parameters:
- parametersTypeint
Distribution parameters index
- setFiniteDifferenceStep(step)¶
Finite difference step accessor.
- Parameters:
- stepfloat
Finite difference step used to define the gradient and the hessian of the model’s function. By default the step is equal to 1e-7. The gradient function is defined with the first order non-centered finite difference scheme and the hessian function with the second order centered finite difference scheme.
Notes
First order non-centered finite difference scheme:
Second order centered finite difference scheme:
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setStochastic(stoch)¶
Whether the variable is stochastic.
- Parameters:
- isStochasticbool
Whether the variable is stochastic
- setUnit(unit)¶
Unit accessor.
- Parameters:
- unitstr
Physical quantity unit, if applicable
- setValue(value)¶
Default value accessor.
- Parameters:
- valuefloat
Default value