ProbabilisticDesignOfExperiment¶
- class persalys.ProbabilisticDesignOfExperiment(*args)¶
- Create a probabilistic design of experiments. - Available constructors:
- ProbabilisticDesignOfExperiment(name, physicalModel) - ProbabilisticDesignOfExperiment(name, physicalModel, size, designName) 
 - Parameters:
- namestr
- Name 
- physicalModelPhysicalModel
- Physical model with at least a stochastic input variable. 
- sizepositive int
- Number of points in the design. 
- designNamestr
- Name of the design. Use - GetDesignNames()to list available names.
 
 - Methods - Accessor to the list of designs provided by ProbabilisticDesignOfExperiment. - Block size accessor. - Accessor to the object's name. - Accessor to the design name. - Design of experiments accessor. - Error message accessor. - Failed input sample accessor. - Get the variables to analyse. - getName()- Accessor to the object's name. - Not evaluated input sample accessor. - Input sample accessor. - Physical model accessor. - Physical model accessor. - getSeed()- Seed accessor. - getSize()- Accessor to the size of the generated sample. - Warning message accessor. - hasName()- Test if the object is named. - Whether the analysis has been run. - Whether the analysis involves reliability. - Whether the analysis is running. - run()- Launch the analysis. - setBlockSize(size)- Block size accessor. - setDesignName(name)- Accessor to the design name. - setEvaluations(outputSample)- Add evaluations for the design of experiments - setInterestVariables(variablesNames)- Set the variables to analyse. - setName(name)- Accessor to the object's name. - setSeed(seed)- Initialize the random generator seed. - setSize(size)- Accessor to the size of the generated sample. - GetSpaceFillings - getMCLHSSize - getResult - getSpaceFilling - setSpaceFilling - Examples - >>> import openturns as ot >>> import persalys - Create the model: - >>> R = persalys.Input('R', 0., ot.LogNormalMuSigma(300., 30., 0.).getDistribution(), 'Yield strength') >>> F = persalys.Input('F', 0., ot.Normal(75000., 5000.), 'Traction load') >>> G = persalys.Output('G', 'deviation') >>> myPhysicalModel = persalys.SymbolicPhysicalModel('myPhysicalModel', [R, F], [G], ['R-F/(pi_*100.0)']) - Create the design of experiments: - >>> myDOE = persalys.ProbabilisticDesignOfExperiment('myDOE', myPhysicalModel, 10, 'MONTE_CARLO') - __init__(*args)¶
 - static GetDesignNames()¶
- Accessor to the list of designs provided by ProbabilisticDesignOfExperiment. - Returns:
- namesopenturns.Description
- List of design names provided by ProbabilisticDesignOfExperiment. 
 
- names
 - Examples - >>> import persalys >>> print(persalys.ProbabilisticDesignOfExperiment.GetDesignNames()) [LHS,SALHS,MCLHS,MONTE_CARLO,QUASI_MONTE_CARLO] 
 - getBlockSize()¶
- Block size accessor. - Returns:
- blockSizepositive int
- Number of terms analysed together. It is set by default to 1. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getDesignName()¶
- Accessor to the design name. - Returns:
- designNamestr
- The design name. 
 
 
 - getErrorDescription()¶
- Design of experiments accessor. - Returns:
- errorDescDescription
- Descriptioncontaining messages from failed points.
 
- errorDesc
 
 - getErrorMessage()¶
- Error message accessor. - Returns:
- messagestr
- Error message if the analysis failed 
 
 
 - getFailedInputSample()¶
- Failed input sample accessor. - Returns:
- sampleopenturns.Sample
- Sample with the failed input values 
 
- sample
 
 - getInterestVariables()¶
- Get the variables to analyse. - Returns:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getNotEvaluatedInputSample()¶
- Not evaluated input sample accessor. - Returns:
- sampleopenturns.Sample
- Points of the design of experiments which were not evaluated 
 
- sample
 
 - getOriginalInputSample()¶
- Input sample accessor. - Returns:
- sampleopenturns.Sample
- Input sample. 
 
- sample
 
 - getPhysicalModel()¶
- Physical model accessor. - Returns:
- modelPhysicalModel
- Physical model 
 
- model
 
 - getPythonScript()¶
- Physical model accessor. - Returns:
- scriptstr
- Python script to replay the analysis 
 
 
 - getSeed()¶
- Seed accessor. - Returns:
- seedint
- Seed value 
 
 
 - getSize()¶
- Accessor to the size of the generated sample. - Returns:
- sizepositive int
- Number of points in the design. 
 
 
 - getWarningMessage()¶
- Warning message accessor. - Returns:
- messagestr
- Warning message which can appear during the analysis computation 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasValidResult()¶
- Whether the analysis has been run. - Returns:
- hasValidResultbool
- Whether the analysis has already been run 
 
 
 - isReliabilityAnalysis()¶
- Whether the analysis involves reliability. - Returns:
- isReliabilityAnalysisbool
- Whether the analysis involves a reliability analysis 
 
 
 - isRunning()¶
- Whether the analysis is running. - Returns:
- isRunningbool
- Whether the analysis is running 
 
 
 - run()¶
- Launch the analysis. 
 - setBlockSize(size)¶
- Block size accessor. - Parameters:
- blockSizepositive int
- Number of terms analysed together. It is set by default to 1. 
 
 
 - setDesignName(name)¶
- Accessor to the design name. - Parameters:
- designNamestr
- The design name. Use - GetDesignNames()to list available names.
 
 
 - setEvaluations(outputSample)¶
- Add evaluations for the design of experiments - Parameters:
- outputSample:py:openturns.Sample
- sample containing values for the output variables 
 
- outputSample:py:
 
 - setInterestVariables(variablesNames)¶
- Set the variables to analyse. - Parameters:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setSeed(seed)¶
- Initialize the random generator seed. - Parameters:
- seedint
- Seed value. 
 
 
 - setSize(size)¶
- Accessor to the size of the generated sample. - Parameters:
- sizepositive int
- Number of points in the design. 
 
 
 
