DataAnalysis¶
- class persalys.DataAnalysis(*args)¶
- Create a data analysis of a design of experiments. - Parameters:
- namestr
- Name 
- designDesignOfExperiment
- Design of experiments 
 
 - Methods - Accessor to the object's name. - Design of experiments accessor. - Error message accessor. - Get the variables to analyse. - Confidence interval level accessor. - getName()- Accessor to the object's name. - Physical model accessor. - Result accessor. - Warning message accessor. - hasName()- Test if the object is named. - Whether the analysis has been run. - Whether a confidence interval is required. - Whether the analysis involves reliability. - Whether the analysis is running. - run()- Launch the analysis. - setInterestVariables(variablesNames)- Set the variables to analyse. - setIsConfidenceIntervalRequired(isRequired)- Whether a confidence interval is required. - setLevelConfidenceInterval(level)- Confidence interval level accessor. - setName(name)- Accessor to the object's name. - Examples - >>> import openturns as ot >>> import persalys >>> ot.RandomGenerator.SetSeed(0) - Create the model: - >>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2]) - Create the Data analysis: - >>> analysis = persalys.DataAnalysis('analysis', model) >>> analysis.run() - Get the result: - >>> result = analysis.getResult() >>> mean = result.getMean() - __init__(*args)¶
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getDesignOfExperiment()¶
- Design of experiments accessor. - Returns:
- modelDesignOfExperiment
- Design of experiments 
 
- model
 
 - getErrorMessage()¶
- Error message accessor. - Returns:
- messagestr
- Error message if the analysis failed 
 
 
 - getInterestVariables()¶
- Get the variables to analyse. - Returns:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - getLevelConfidenceInterval()¶
- Confidence interval level accessor. - Returns:
- valuefloat
- Confidence interval level. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getPythonScript()¶
- Physical model accessor. - Returns:
- scriptstr
- Python script to replay the analysis 
 
 
 - getResult()¶
- Result accessor. - Returns:
- resultDataAnalysisResult
- Result. 
 
- result
 
 - getWarningMessage()¶
- Warning message accessor. - Returns:
- messagestr
- Warning message which can appear during the analysis computation 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasValidResult()¶
- Whether the analysis has been run. - Returns:
- hasValidResultbool
- Whether the analysis has already been run 
 
 
 - isConfidenceIntervalRequired()¶
- Whether a confidence interval is required. - Returns:
- valuebool
- Whether a confidence interval is required. 
 
 
 - isReliabilityAnalysis()¶
- Whether the analysis involves reliability. - Returns:
- isReliabilityAnalysisbool
- Whether the analysis involves a reliability analysis 
 
 
 - isRunning()¶
- Whether the analysis is running. - Returns:
- isRunningbool
- Whether the analysis is running 
 
 
 - run()¶
- Launch the analysis. 
 - setInterestVariables(variablesNames)¶
- Set the variables to analyse. - Parameters:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - setIsConfidenceIntervalRequired(isRequired)¶
- Whether a confidence interval is required. - Parameters:
- valuebool
- Whether a confidence interval is required 
 
 
 - setLevelConfidenceInterval(level)¶
- Confidence interval level accessor. - Parameters:
- valuefloat
- Confidence interval level 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 
