DataAnalysis¶
- class persalys.DataAnalysis(*args)¶
Create a data analysis of a design of experiments.
- Parameters
- namestr
Name
- design
DesignOfExperiment
Design of experiments
Examples
>>> import openturns as ot >>> import persalys >>> ot.RandomGenerator.SetSeed(0)
Create the model:
>>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])
Create the Data analysis:
>>> analysis = persalys.DataAnalysis('analysis', model) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> mean = result.getMean()
Methods
Accessor to the object's name.
Design of experiments accessor.
Error message accessor.
Get the variables to analyse.
Confidence interval level accessor.
getName
()Accessor to the object's name.
Physical model accessor.
Result accessor.
Warning message accessor.
hasName
()Test if the object is named.
Whether the analysis has been run.
Whether a confidence interval is required.
Whether the analysis involves reliability.
Whether the analysis is running.
run
()Launch the analysis.
setInterestVariables
(variablesNames)Set the variables to analyse.
setIsConfidenceIntervalRequired
(isRequired)Whether a confidence interval is required.
setLevelConfidenceInterval
(level)Confidence interval level accessor.
setName
(name)Accessor to the object's name.
canBeLaunched
getElapsedTime
getParentObserver
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getDesignOfExperiment()¶
Design of experiments accessor.
- Returns
- model
DesignOfExperiment
Design of experiments
- model
- getErrorMessage()¶
Error message accessor.
- Returns
- messagestr
Error message if the analysis failed
- getInterestVariables()¶
Get the variables to analyse.
- Returns
- variablesNamessequence of str
Names of the variables to analyse
- getLevelConfidenceInterval()¶
Confidence interval level accessor.
- Returns
- valuefloat
Confidence interval level.
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getPythonScript()¶
Physical model accessor.
- Returns
- scriptstr
Python script to replay the analysis
- getResult()¶
Result accessor.
- Returns
- result
DataAnalysisResult
Result.
- result
- getWarningMessage()¶
Warning message accessor.
- Returns
- messagestr
Warning message which can appear during the analysis computation
- hasName()¶
Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
- hasValidResult()¶
Whether the analysis has been run.
- Returns
- hasValidResultbool
Whether the analysis has already been run
- isConfidenceIntervalRequired()¶
Whether a confidence interval is required.
- Returns
- valuebool
Whether a confidence interval is required.
- isReliabilityAnalysis()¶
Whether the analysis involves reliability.
- Returns
- isReliabilityAnalysisbool
Whether the analysis involves a reliability analysis
- isRunning()¶
Whether the analysis is running.
- Returns
- isRunningbool
Whether the analysis is running
- run()¶
Launch the analysis.
- setInterestVariables(variablesNames)¶
Set the variables to analyse.
- Parameters
- variablesNamessequence of str
Names of the variables to analyse
- setIsConfidenceIntervalRequired(isRequired)¶
Whether a confidence interval is required.
- Parameters
- valuebool
Whether a confidence interval is required
- setLevelConfidenceInterval(level)¶
Confidence interval level accessor.
- Parameters
- valuefloat
Confidence interval level
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.