MonteCarloAnalysis

class persalys.MonteCarloAnalysis(*args)

Perform a Monte Carlo central tendency analysis.

Parameters:

name : str

Name

physicalModel : PhysicalModel

Physical model

Examples

>>> import openturns as ot
>>> import persalys

Create the model:

>>> R = persalys.Input('R', 0., ot.LogNormalMuSigma(300., 30., 0.).getDistribution(), 'Yield strength')
>>> F = persalys.Input('F', 0., ot.Normal(75000., 5000.), 'Traction load')
>>> G = persalys.Output('G', 'deviation')
>>> myPhysicalModel = persalys.SymbolicPhysicalModel('myPhysicalModel', [R, F], [G], ['R-F/(pi_*100.0)'])

Create the Monte Carlo analysis:

>>> analysis = persalys.MonteCarloAnalysis('anAnalysis', myPhysicalModel)
>>> analysis.setMaximumCalls(500)
>>> analysis.setBlockSize(500)
>>> analysis.run()

Get the result:

>>> result = analysis.getResult()
>>> mean = result.getMean()

Methods

getBlockSize() Block size accessor.
getClassName() Accessor to the object’s name.
getErrorMessage() Error message accessor.
getFailedInputSample() Failed input sample accessor.
getId() Accessor to the object’s id.
getInterestVariables() Get the variables to analyse.
getLevelConfidenceInterval() Confidence interval level accessor.
getMaximumCalls() Maximum calls accessor.
getMaximumCoefficientOfVariation() Maximum coefficient of variation accessor.
getMaximumElapsedTime() Maximum elapsed time accessor.
getName() Accessor to the object’s name.
getPhysicalModel() Physical model accessor.
getPythonScript() Physical model accessor.
getResult() Result accessor.
getSeed() Seed accessor.
getShadowedId() Accessor to the object’s shadowed id.
getVisibility() Accessor to the object’s visibility state.
getWarningMessage() Warning message accessor.
hasName() Test if the object is named.
hasValidResult() Whether the analysis has been run.
hasVisibleName() Test if the object has a distinguishable name.
isConfidenceIntervalRequired() Confidence interval flag accessor.
isReliabilityAnalysis() Whether the analysis involves reliability.
isRunning() Whether the analysis is running.
run() Launch the analysis.
setBlockSize(size) Block size accessor.
setInterestVariables(variablesNames) Set the variables to analyse.
setIsConfidenceIntervalRequired(…) Confidence interval flag accessor.
setLevelConfidenceInterval(…) Confidence interval level accessor.
setMaximumCalls(maxi) Maximum calls accessor.
setMaximumCoefficientOfVariation(coef) Maximum coefficient of variation accessor.
setMaximumElapsedTime(seconds) Maximum elapsed time accessor.
setName(name) Accessor to the object’s name.
setSeed(seed) Seed accessor.
setShadowedId(id) Accessor to the object’s shadowed id.
setVisibility(visible) Accessor to the object’s visibility state.
__init__(*args)
getBlockSize()

Block size accessor.

Returns:

blockSize : positive int

Number of terms analysed together. It is set by default to 1.

getClassName()

Accessor to the object’s name.

Returns:

class_name : str

The object class name (object.__class__.__name__).

getErrorMessage()

Error message accessor.

Returns:

message : str

Error message if the analysis failed

getFailedInputSample()

Failed input sample accessor.

Returns:

sample : openturns.Sample

Sample with the failed input values

getId()

Accessor to the object’s id.

Returns:

id : int

Internal unique identifier.

getInterestVariables()

Get the variables to analyse.

Returns:

variablesNames : sequence of str

Names of the variables to analyse

getLevelConfidenceInterval()

Confidence interval level accessor.

Returns:

level : float

Confidence interval level. It is set by default to 0.95.

getMaximumCalls()

Maximum calls accessor.

Returns:

maxCalls : positive int

The maximum calls of the function.

getMaximumCoefficientOfVariation()

Maximum coefficient of variation accessor.

Returns:

maxCoef : double

The maximum coefficient of variation. It is set by default to 0.01.

getMaximumElapsedTime()

Maximum elapsed time accessor.

Returns:

maxTime : positive int

The maximum elapsed time in seconds. It is set by default to 60 seconds.

getName()

Accessor to the object’s name.

Returns:

name : str

The name of the object.

getPhysicalModel()

Physical model accessor.

Returns:

model : PhysicalModel

Physical model

getPythonScript()

Physical model accessor.

Returns:

script : str

Python script to replay the analysis

getResult()

Result accessor.

Returns:

result : DataAnalysisResult

Result

getSeed()

Seed accessor.

Returns:

seed : int

Seed value

getShadowedId()

Accessor to the object’s shadowed id.

Returns:

id : int

Internal unique identifier.

getVisibility()

Accessor to the object’s visibility state.

Returns:

visible : bool

Visibility flag.

getWarningMessage()

Warning message accessor.

Returns:

message : str

Warning message which can appear during the analysis computation

hasName()

Test if the object is named.

Returns:

hasName : bool

True if the name is not empty.

hasValidResult()

Whether the analysis has been run.

Returns:

hasValidResult : bool

Whether the analysis has already been run

hasVisibleName()

Test if the object has a distinguishable name.

Returns:

hasVisibleName : bool

True if the name is not empty and not the default one.

isConfidenceIntervalRequired()

Confidence interval flag accessor.

Returns:

flag : bool

Confidence interval flag

isReliabilityAnalysis()

Whether the analysis involves reliability.

Returns:

isReliabilityAnalysis : bool

Whether the analysis involves a reliability analysis

isRunning()

Whether the analysis is running.

Returns:

isRunning : bool

Whether the analysis is running

run()

Launch the analysis.

setBlockSize(size)

Block size accessor.

Parameters:

blockSize : positive int

Number of terms analysed together. It is set by default to 1.

setInterestVariables(variablesNames)

Set the variables to analyse.

Parameters:

variablesNames : sequence of str

Names of the variables to analyse

setIsConfidenceIntervalRequired(isConfidenceIntervalRequired)

Confidence interval flag accessor.

Parameters:

flag : bool

Confidence interval flag

setLevelConfidenceInterval(levelConfidenceInterval)

Confidence interval level accessor.

Parameters:

level : float

Confidence interval level. It is set by default to 0.95.

setMaximumCalls(maxi)

Maximum calls accessor.

Parameters:

maxCalls : positive int

The maximum calls of the function.

setMaximumCoefficientOfVariation(coef)

Maximum coefficient of variation accessor.

Parameters:

maxCoef : double

The maximum coefficient of variation. It is set by default to 0.01.

setMaximumElapsedTime(seconds)

Maximum elapsed time accessor.

Parameters:

maxTime : positive int

The maximum elapsed time in seconds. It is set by default to 60 seconds.

setName(name)

Accessor to the object’s name.

Parameters:

name : str

The name of the object.

setSeed(seed)

Seed accessor.

Parameters:

seed : int

Seed value

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters:

id : int

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:

visible : bool

Visibility flag.