InferenceAnalysis¶
-
class
persalys.
InferenceAnalysis
(*args)¶ Perform a Kolmogorov goodness-of-fit test for 1-D continuous distributions.
Parameters: name : str
Name
design :
DesignOfExperiment
Design of experiments
Examples
>>> import openturns as ot >>> import persalys >>> ot.RandomGenerator_SetSeed(0)
Create the model:
>>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])
Create the Inference Analysis:
>>> analysis = persalys.InferenceAnalysis('analysis', model) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> resultX0 = result.getFittingTestResultForVariable('X0')
Methods
getClassName
()Accessor to the object’s name. getDesignOfExperiment
()Design of experiments accessor. getDistributionsFactories
(variableName)Get the sequence of distributions to test for a variable. getErrorMessage
()Error message accessor. getId
()Accessor to the object’s id. getInterestVariables
()Get the variables to analyse. getLevel
()Level accessor. getName
()Accessor to the object’s name. getPythonScript
()Physical model accessor. getResult
()Result accessor. getShadowedId
()Accessor to the object’s shadowed id. getVisibility
()Accessor to the object’s visibility state. getWarningMessage
()Warning message accessor. hasName
()Test if the object is named. hasValidResult
()Whether the analysis has been run. hasVisibleName
()Test if the object has a distinguishable name. isReliabilityAnalysis
()Whether the analysis involves reliability. isRunning
()Whether the analysis is running. run
()Launch the analysis. setDistributionsFactories
(variableName, …)Set the sequence of distributions to test for a variable. setInterestVariables
(variablesNames)Set the variables to analyse. setLevel
(level)Level accessor. setName
(name)Accessor to the object’s name. setShadowedId
(id)Accessor to the object’s shadowed id. setVisibility
(visible)Accessor to the object’s visibility state. -
__init__
(*args)¶
-
getClassName
()¶ Accessor to the object’s name.
Returns: class_name : str
The object class name (object.__class__.__name__).
-
getDesignOfExperiment
()¶ Design of experiments accessor.
Returns: model :
DesignOfExperiment
Design of experiments
-
getDistributionsFactories
(variableName)¶ Get the sequence of distributions to test for a variable.
Parameters: variable : str
Name of the variable
Returns: factories : sequence of
openturns.DistributionFactory
Distributions to test
-
getErrorMessage
()¶ Error message accessor.
Returns: message : str
Error message if the analysis failed
-
getId
()¶ Accessor to the object’s id.
Returns: id : int
Internal unique identifier.
-
getInterestVariables
()¶ Get the variables to analyse.
Returns: variablesNames : sequence of str
Names of the variables to analyse
-
getLevel
()¶ Level accessor.
Returns: level : float, , optional
The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
-
getName
()¶ Accessor to the object’s name.
Returns: name : str
The name of the object.
-
getPythonScript
()¶ Physical model accessor.
Returns: script : str
Python script to replay the analysis
-
getResult
()¶ Result accessor.
Returns: result :
InferenceResult
Result.
-
getShadowedId
()¶ Accessor to the object’s shadowed id.
Returns: id : int
Internal unique identifier.
-
getVisibility
()¶ Accessor to the object’s visibility state.
Returns: visible : bool
Visibility flag.
-
getWarningMessage
()¶ Warning message accessor.
Returns: message : str
Warning message which can appear during the analysis computation
-
hasName
()¶ Test if the object is named.
Returns: hasName : bool
True if the name is not empty.
-
hasValidResult
()¶ Whether the analysis has been run.
Returns: hasValidResult : bool
Whether the analysis has already been run
-
hasVisibleName
()¶ Test if the object has a distinguishable name.
Returns: hasVisibleName : bool
True if the name is not empty and not the default one.
-
isReliabilityAnalysis
()¶ Whether the analysis involves reliability.
Returns: isReliabilityAnalysis : bool
Whether the analysis involves a reliability analysis
-
isRunning
()¶ Whether the analysis is running.
Returns: isRunning : bool
Whether the analysis is running
-
run
()¶ Launch the analysis.
-
setDistributionsFactories
(variableName, distributionsFactories)¶ Set the sequence of distributions to test for a variable.
Parameters: variable : str
Name of the variable
factories : sequence of
openturns.DistributionFactory
Distributions to test
-
setInterestVariables
(variablesNames)¶ Set the variables to analyse.
Parameters: variablesNames : sequence of str
Names of the variables to analyse
-
setLevel
(level)¶ Level accessor.
Parameters: level : float, , optional
The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
-
setName
(name)¶ Accessor to the object’s name.
Parameters: name : str
The name of the object.
-
setShadowedId
(id)¶ Accessor to the object’s shadowed id.
Parameters: id : int
Internal unique identifier.
-
setVisibility
(visible)¶ Accessor to the object’s visibility state.
Parameters: visible : bool
Visibility flag.
-