CalibrationAnalysis¶
-
class
persalys.
CalibrationAnalysis
(*args)¶ Run a calibration analysis.
Parameters: name : str
Name
observations :
Observations
Observations of at least one input and one output
Examples
>>> import openturns as ot >>> import persalys
Create the Chaboche model:
>>> R = persalys.Input('R', 700e6, ot.LogNormalMuSigma(750e6, 11e6).getDistribution(), 'Parameter R') >>> C = persalys.Input('C', 2500e6, ot.Normal(2750e6, 250e6), 'Parameter C') >>> gamma = persalys.Input('gam', 8., ot.Normal(10, 2), 'Parameter gamma') >>> dist_strain = ot.Uniform(0, 0.07) >>> strain = persalys.Input('strain', 0., dist_strain, 'Strain') >>> sigma = persalys.Output('sigma', 'Stress (Pa)')
>>> model = persalys.SymbolicPhysicalModel('model1', [R, C, gamma, strain], [sigma], ['R + C / gam * (1 - exp(-gam * strain))'])
Generate observations:
>>> nbObs = 100 >>> strainObs = dist_strain.getSample(nbObs) >>> strainObs.setDescription(['strain']) >>> stressSampleNoise = ot.Normal(0., 40.e6).getSample(nbObs) >>> stressSample = ot.ParametricFunction(model.getFunction(), [0, 1, 2], [750e6, 2750e6, 10.])(strainObs) >>> stressObs = stressSample + stressSampleNoise
>>> observations = persalys.Observations('obs1', model, strainObs, stressObs)
Process a calibration analysis:
>>> analysis = persalys.CalibrationAnalysis('myAnalysis', observations) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> thetaStar = result.getCalibrationResult().getParameterMAP()
Methods
GetMethodNames
()Get the list of available method names. getBootStrapSize
()Accessor to the bootstrap size used to sample the posterior distribution. getCalibratedInputs
()Inputs to calibrate accessor. getClassName
()Accessor to the object’s name. getConfidenceIntervalLength
()Confidence interval length accessor. getErrorCovariance
()Accessor to the output observations error covariance. getErrorMessage
()Error message accessor. getFixedInputs
()Fixed inputs accessor. getId
()Accessor to the object’s id. getInterestVariables
()Get the variables to analyse. getMethodName
()Accessor to the method name getName
()Accessor to the object’s name. getObservations
()Accessor to the data to be fitted. getOptimizationAlgorithm
()Accessor to the optimization algorithm used by non linear algorithms. getPhysicalModel
()Physical model accessor. getPriorDistribution
()Accessor to the prior distribution. getPythonScript
()Physical model accessor. getResult
()Result accessor. getShadowedId
()Accessor to the object’s shadowed id. getVisibility
()Accessor to the object’s visibility state. getWarningMessage
()Warning message accessor. hasName
()Test if the object is named. hasValidResult
()Whether the analysis has been run. hasVisibleName
()Test if the object has a distinguishable name. isReliabilityAnalysis
()Whether the analysis involves reliability. isRunning
()Whether the analysis is running. run
()Launch the analysis. setBootStrapSize
(arg2)Accessor to the bootstrap size used to sample the posterior distribution. setCalibratedInputs
(*args)Accessor to the inputs to calibrate and the fixed inputs. setConfidenceIntervalLength
(arg2)Confidence interval length accessor. setErrorCovariance
(matrix)Accessor to the output observations error covariance. setInterestVariables
(variablesNames)Set the variables to analyse. setMethodName
(name)Accessor to the method name setName
(name)Accessor to the object’s name. setOptimizationAlgorithm
(solver)Accessor to the optimization algorithm used by non linear algorithms. setShadowedId
(id)Accessor to the object’s shadowed id. setVisibility
(visible)Accessor to the object’s visibility state. -
__init__
(*args)¶
-
static
GetMethodNames
()¶ Get the list of available method names.
Returns: names :
Description
List of available calibration method names.
-
getBootStrapSize
()¶ Accessor to the bootstrap size used to sample the posterior distribution.
Returns: size : int
Bootstrap size used to sample the posterior distribution by the non linear algorithms. A value of 0 means that no bootstrap has been done but a linear approximation has been used to get the posterior distribution, using the GaussianLinearCalibration or LinearLeastSquaresCalibration algorithm at the maximum a posteriori estimate. The value 1 is not allowed at this time.
-
getCalibratedInputs
()¶ Inputs to calibrate accessor.
Returns: inputs :
openturns.Description
Names of the input variables to calibrate
-
getClassName
()¶ Accessor to the object’s name.
Returns: class_name : str
The object class name (object.__class__.__name__).
-
getConfidenceIntervalLength
()¶ Confidence interval length accessor.
Returns: length : float
Length of the confidence interval of the posterior distribution. It is set by default to 0.95.
-
getErrorCovariance
()¶ Accessor to the output observations error covariance.
Returns: matrix :
openturns.CovarianceMatrix
The covariance matrix of the gaussian distribution of the output observations error. Used by the gaussian algorithms.
-
getErrorMessage
()¶ Error message accessor.
Returns: message : str
Error message if the analysis failed
-
getFixedInputs
()¶ Fixed inputs accessor.
Returns: inputs :
openturns.PointWithDescription
Fixed input names and values
-
getId
()¶ Accessor to the object’s id.
Returns: id : int
Internal unique identifier.
-
getInterestVariables
()¶ Get the variables to analyse.
Returns: variablesNames : sequence of str
Names of the variables to analyse
-
getMethodName
()¶ Accessor to the method name
Returns: method : str
Method name. Default is ‘LeastSquaresLinear’. Use
GetMethodNames()
to list available names.
-
getName
()¶ Accessor to the object’s name.
Returns: name : str
The name of the object.
-
getOptimizationAlgorithm
()¶ Accessor to the optimization algorithm used by non linear algorithms.
Returns: algorithm :
openturns.OptimizationAlgorithm
Optimization algorithm used by non linear algorithms. The optimization problem and the starting point are not taken into account.
-
getPhysicalModel
()¶ Physical model accessor.
Returns: model :
PhysicalModel
Physical model
-
getPriorDistribution
()¶ Accessor to the prior distribution.
Returns: distribution :
openturns.Distribution
Prior distribution
-
getPythonScript
()¶ Physical model accessor.
Returns: script : str
Python script to replay the analysis
-
getResult
()¶ Result accessor.
Returns: result :
CalibrationAnalysisResult
Result
-
getShadowedId
()¶ Accessor to the object’s shadowed id.
Returns: id : int
Internal unique identifier.
-
getVisibility
()¶ Accessor to the object’s visibility state.
Returns: visible : bool
Visibility flag.
-
getWarningMessage
()¶ Warning message accessor.
Returns: message : str
Warning message which can appear during the analysis computation
-
hasName
()¶ Test if the object is named.
Returns: hasName : bool
True if the name is not empty.
-
hasValidResult
()¶ Whether the analysis has been run.
Returns: hasValidResult : bool
Whether the analysis has already been run
-
hasVisibleName
()¶ Test if the object has a distinguishable name.
Returns: hasVisibleName : bool
True if the name is not empty and not the default one.
-
isReliabilityAnalysis
()¶ Whether the analysis involves reliability.
Returns: isReliabilityAnalysis : bool
Whether the analysis involves a reliability analysis
-
isRunning
()¶ Whether the analysis is running.
Returns: isRunning : bool
Whether the analysis is running
-
run
()¶ Launch the analysis.
-
setBootStrapSize
(arg2)¶ Accessor to the bootstrap size used to sample the posterior distribution.
Parameters: size : int
Bootstrap size used to sample the posterior distribution by the non linear algorithms. A value of 0 means that no bootstrap has been done but a linear approximation has been used to get the posterior distribution, using the GaussianLinearCalibration or LinearLeastSquaresCalibration algorithm at the maximum a posteriori estimate. The value 1 is not allowed at this time.
-
setCalibratedInputs
(*args)¶ Accessor to the inputs to calibrate and the fixed inputs.
Parameters: calibratedInput : sequence of str
Names of the input variables to calibrate
priorDistribution :
openturns.Distribution
Prior distribution. Its dimension must equal to the number of variables to calibrate
fixedInputs : sequence of str, optional
Names of the input variables to fix
values : sequence of float, optional
Values of the fixed inputs
-
setConfidenceIntervalLength
(arg2)¶ Confidence interval length accessor.
Parameters: length : float
Length of the confidence interval of the posterior distribution. It is set by default to 0.95.
-
setErrorCovariance
(matrix)¶ Accessor to the output observations error covariance.
Parameters: matrix :
openturns.CovarianceMatrix
The covariance matrix of the gaussian distribution of the output observations error. Used by the gaussian algorithms.
-
setInterestVariables
(variablesNames)¶ Set the variables to analyse.
Parameters: variablesNames : sequence of str
Names of the variables to analyse
-
setMethodName
(name)¶ Accessor to the method name
Parameters: method : str
Method name. Default is ‘LeastSquaresLinear’. Use
GetMethodNames()
to list available names.
-
setName
(name)¶ Accessor to the object’s name.
Parameters: name : str
The name of the object.
-
setOptimizationAlgorithm
(solver)¶ Accessor to the optimization algorithm used by non linear algorithms.
Parameters: algorithm :
openturns.OptimizationAlgorithm
Optimization algorithm used by non linear algorithms. The optimization problem and the starting point are not taken into account.
-
setShadowedId
(id)¶ Accessor to the object’s shadowed id.
Parameters: id : int
Internal unique identifier.
-
setVisibility
(visible)¶ Accessor to the object’s visibility state.
Parameters: visible : bool
Visibility flag.
-