QuantileAnalysis

class persalys.QuantileAnalysis(*args)

Create a data analysis of a design of experiments.

Parameters:
namestr

Name

designDesignOfExperiment

Design of experiments

Methods

getCDFThreshold()

CDF threshold accessor.

getClassName()

Accessor to the object's name.

getConfidenceIntervalLevel()

Confidence level accessor.

getDesignOfExperiment()

Design of experiments accessor.

getErrorMessage()

Error message accessor.

getInterestVariables()

Get the variables to analyse.

getName()

Accessor to the object's name.

getParameterSampleSize()

Parameters sample size accessor.

getPythonScript()

Physical model accessor.

getResult()

Result accessor.

getSeed()

Random generator seed.

getTailTypes()

Tail types accessor.

getTargetProbabilities()

Target probabilities accessor.

getThreshold()

Threshold accessor.

getType()

Analysis type accessor

getWarningMessage()

Warning message accessor.

hasName()

Test if the object is named.

hasValidResult()

Whether the analysis has been run.

isReliabilityAnalysis()

Whether the analysis involves reliability.

isRunning()

Whether the analysis is running.

run()

Launch the analysis.

setConfidenceIntervalLevel(ciLevel)

Confidence level accessor.

setInterestVariables(variablesNames)

Set the variables to analyse.

setName(name)

Accessor to the object's name.

setParameterSampleSize(paramSampleSize)

Parameters sample size accessor.

setSeed(seed)

Random generator seed.

setTailTypes(tailTypes)

Tail types accessor.

setTargetProbabilities(targetProbas)

Target probabilities accessor.

setThreshold(threshold)

Threshold accessor.

setType(type)

Analysis type accessor

checkThresholdCompatibility

computeSampleSizeValidity

getDefaultTargetProbability

plotGPD

plotMeanExcess

setDefaultTargetProbability

Examples

>>> import openturns as ot
>>> import persalys
>>> ot.RandomGenerator.SetSeed(0)

Create the model:

>>> filename = 'data.csv'
>>> sample = ot.Normal(3).getSample(100)
>>> sample.exportToCSVFile(filename)
>>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])

Create the Quantile analysis:

>>> analysis = persalys.QuantileAnalysis('analysis', model)
>>> analysis.setTargetProbabilities([[1e-2]]*3)
>>> analysis.setTailTypes([persalys.QuantileAnalysisResult.Upper]*3)
>>> analysis.run()

Get the result:

>>> result = analysis.getResult()
__init__(*args)
getCDFThreshold()

CDF threshold accessor.

Returns:
cdfThresholdopenturns.Sample

CDF threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getConfidenceIntervalLevel()

Confidence level accessor.

Returns:
ciLeveldouble

Confidence level for quantile intervals.

getDesignOfExperiment()

Design of experiments accessor.

Returns:
modelDesignOfExperiment

Design of experiments

getErrorMessage()

Error message accessor.

Returns:
messagestr

Error message if the analysis failed

getInterestVariables()

Get the variables to analyse.

Returns:
variablesNamessequence of str

Names of the variables to analyse

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getParameterSampleSize()

Parameters sample size accessor.

Returns:
sizeint

Number of Generalized Pareto set of parameters used for estimating quantiles confidence interval. It is set by default to 1000.

getPythonScript()

Physical model accessor.

Returns:
scriptstr

Python script to replay the analysis

getResult()

Result accessor.

Returns:
resultpersalys.QuantileAnalysisResult

Analysis result.

getSeed()

Random generator seed.

Returns:
seedint

Random generator seed.

getTailTypes()

Tail types accessor.

Returns:
typesopenturns.Indices

Collection of bit-wise tail type for each marginal. Lower = 1, Upper = 2, Bilateral = 4

getTargetProbabilities()

Target probabilities accessor.

Returns:
targetProbasequence of openturns.Point

Collection (size: number of marginals) of points (dimension: number of terget probabilities for each marginals) for which the quantiles are estimated.

getThreshold()

Threshold accessor.

Returns:
thresholdopenturns.Sample

Threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.

getType()

Analysis type accessor

Returns:
typeenum

Analysis type, either persalys.QuantileAnalysisResult.MonteCarlo or persalys.QuantileAnalysisResult.GeneralizedPareto.

getWarningMessage()

Warning message accessor.

Returns:
messagestr

Warning message which can appear during the analysis computation

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasValidResult()

Whether the analysis has been run.

Returns:
hasValidResultbool

Whether the analysis has already been run

isReliabilityAnalysis()

Whether the analysis involves reliability.

Returns:
isReliabilityAnalysisbool

Whether the analysis involves a reliability analysis

isRunning()

Whether the analysis is running.

Returns:
isRunningbool

Whether the analysis is running

run()

Launch the analysis.

setConfidenceIntervalLevel(ciLevel)

Confidence level accessor.

Parameters:
ciLeveldouble

Confidence level for quantile intervals.

setInterestVariables(variablesNames)

Set the variables to analyse.

Parameters:
variablesNamessequence of str

Names of the variables to analyse

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setParameterSampleSize(paramSampleSize)

Parameters sample size accessor.

Parameters:
sizeint

Number of Generalized Pareto set of parameters used for estimating quantiles confidence interval.

setSeed(seed)

Random generator seed.

Parameters:
seedint

Random generator seed.

setTailTypes(tailTypes)

Tail types accessor.

Parameters:
typesopenturns.Indices

Collection of bit-wise tail type for each marginal. Lower = 1, Upper = 2, Bilateral = 4

setTargetProbabilities(targetProbas)

Target probabilities accessor.

Parameters:
targetProbasequence of openturns.Point

Collection (size: number of marginals) of points (dimension: number of terget probabilities for each marginals) for which the quantiles are estimated.

setThreshold(threshold)

Threshold accessor.

Parameters:
thresholdopenturns.Sample

Threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.

setType(type)

Analysis type accessor

Parameters:
typeenum

Analysis type, either persalys.QuantileAnalysisResult.MonteCarlo or persalys.QuantileAnalysisResult.GeneralizedPareto.