QuantileAnalysis¶
- class persalys.QuantileAnalysis(*args)¶
Create a data analysis of a design of experiments.
- Parameters
- namestr
Name
- design
DesignOfExperiment
Design of experiments
Examples
>>> import openturns as ot >>> import persalys >>> ot.RandomGenerator.SetSeed(0)
Create the model:
>>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])
Create the Quantile analysis:
>>> analysis = persalys.QuantileAnalysis('analysis', model) >>> analysis.setTargetProbabilities([[1e-2]]*3) >>> analysis.setTailTypes([persalys.QuantileAnalysisResult.Upper]*3) >>> analysis.run()
Get the result:
>>> result = analysis.getResult()
Methods
CDF threshold accessor.
Accessor to the object's name.
Confidence level accessor.
Design of experiments accessor.
Error message accessor.
Get the variables to analyse.
getName
()Accessor to the object's name.
Parameters sample size accessor.
Physical model accessor.
Result accessor.
getSeed
()Random generator seed.
Tail types accessor.
Target probabilities accessor.
Threshold accessor.
getType
()Analysis type accessor
Warning message accessor.
hasName
()Test if the object is named.
Whether the analysis has been run.
Whether the analysis involves reliability.
Whether the analysis is running.
run
()Launch the analysis.
setConfidenceIntervalLevel
(ciLevel)Confidence level accessor.
setInterestVariables
(variablesNames)Set the variables to analyse.
setName
(name)Accessor to the object's name.
setParameterSampleSize
(paramSampleSize)Parameters sample size accessor.
setSeed
(seed)Random generator seed.
setTailTypes
(tailTypes)Tail types accessor.
setTargetProbabilities
(targetProbas)Target probabilities accessor.
setThreshold
(threshold)Threshold accessor.
setType
(type)Analysis type accessor
checkThresholdCompatibility
computeWilksValidity
getDefaultTargetProbability
plotGPD
plotMeanExcess
setDefaultTargetProbability
- __init__(*args)¶
- getCDFThreshold()¶
CDF threshold accessor.
- Returns
- cdfThreshold
openturns.Sample
CDF threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.
- cdfThreshold
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getConfidenceIntervalLevel()¶
Confidence level accessor.
- Returns
- ciLeveldouble
Confidence level for quantile intervals.
- getDesignOfExperiment()¶
Design of experiments accessor.
- Returns
- model
DesignOfExperiment
Design of experiments
- model
- getErrorMessage()¶
Error message accessor.
- Returns
- messagestr
Error message if the analysis failed
- getInterestVariables()¶
Get the variables to analyse.
- Returns
- variablesNamessequence of str
Names of the variables to analyse
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getParameterSampleSize()¶
Parameters sample size accessor.
- Returns
- sizeint
Number of Generalized Pareto set of parameters used for estimating quantiles confidence interval. It is set by default to 1000.
- getPythonScript()¶
Physical model accessor.
- Returns
- scriptstr
Python script to replay the analysis
- getResult()¶
Result accessor.
- Returns
- result
persalys.QuantileAnalysisResult
Analysis result.
- result
- getSeed()¶
Random generator seed.
- Returns
- seedint
Random generator seed.
- getTailTypes()¶
Tail types accessor.
- Returns
- types
openturns.Indices
Collection of bit-wise tail type for each marginal. Lower = 1, Upper = 2, Bilateral = 4
- types
- getTargetProbabilities()¶
Target probabilities accessor.
- Returns
- targetProba
openturns.PointCollection
Collection (size: number of marginals) of points (dimension: number of terget probabilities for each marginals) for which the quantiles are estimated.
- targetProba
- getThreshold()¶
Threshold accessor.
- Returns
- threshold
openturns.Sample
Threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.
- threshold
- getType()¶
Analysis type accessor
- Returns
- typeenum
Analysis type, either persalys.QuantileAnalysisResult.MonteCarlo or persalys.QuantileAnalysisResult.GeneralizedPareto.
- getWarningMessage()¶
Warning message accessor.
- Returns
- messagestr
Warning message which can appear during the analysis computation
- hasName()¶
Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
- hasValidResult()¶
Whether the analysis has been run.
- Returns
- hasValidResultbool
Whether the analysis has already been run
- isReliabilityAnalysis()¶
Whether the analysis involves reliability.
- Returns
- isReliabilityAnalysisbool
Whether the analysis involves a reliability analysis
- isRunning()¶
Whether the analysis is running.
- Returns
- isRunningbool
Whether the analysis is running
- run()¶
Launch the analysis.
- setConfidenceIntervalLevel(ciLevel)¶
Confidence level accessor.
- Parameters
- ciLeveldouble
Confidence level for quantile intervals.
- setInterestVariables(variablesNames)¶
Set the variables to analyse.
- Parameters
- variablesNamessequence of str
Names of the variables to analyse
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
- setParameterSampleSize(paramSampleSize)¶
Parameters sample size accessor.
- Parameters
- sizeint
Number of Generalized Pareto set of parameters used for estimating quantiles confidence interval.
- setSeed(seed)¶
Random generator seed.
- Parameters
- seedint
Random generator seed.
- setTailTypes(tailTypes)¶
Tail types accessor.
- Parameters
- types
openturns.Indices
Collection of bit-wise tail type for each marginal. Lower = 1, Upper = 2, Bilateral = 4
- types
- setTargetProbabilities(targetProbas)¶
Target probabilities accessor.
- Parameters
- targetProba
openturns.PointCollection
Collection (size: number of marginals) of points (dimension: number of terget probabilities for each marginals) for which the quantiles are estimated.
- targetProba
- setThreshold(threshold)¶
Threshold accessor.
- Parameters
- threshold
openturns.Sample
Threshold sample, dimension: number of marginals, size=2. threshold[0]: lower threshold, threshold[1]: upper threshold.
- threshold
- setType(type)¶
Analysis type accessor
- Parameters
- typeenum
Analysis type, either persalys.QuantileAnalysisResult.MonteCarlo or persalys.QuantileAnalysisResult.GeneralizedPareto.