Observations

class persalys.Observations(*args)

Create observations for variables of a model.

Available constructors:

Observations(name, physicalModel, fileName, inputColumns, outputColumns, inputNames, outputNames)

Observations(name, inputSample, outputSample)

Parameters
namestr

Name

physicalModelPhysicalModel

Physical model

fileNamestr

Name of a data file (.txt ot .csv) to load

inputColumnssequence of int

Indices of columns of the input variables in file to consider

outputColumnssequence of int

Indices of columns of the output variables in file to consider (optional)

inputNamessequence of str

Names of the input variables (optional)

outputNamessequence of str

Names of the output variables (optional)

inputSampleopenturns.Sample

Input sample (its description must be a list of input variable names)

outputSampleopenturns.Sample

Output sample (its description must be a list of output variable names)

Examples

>>> import openturns as ot
>>> import persalys
>>> ot.RandomGenerator.SetSeed(0)

Create the model:

>>> X0 = persalys.Input('X0')
>>> X1 = persalys.Input('X1')
>>> X2 = persalys.Input('X2')
>>> X3 = persalys.Input('X3')
>>> Y0 = persalys.Output('Y0')
>>> Y1 = persalys.Output('Y1')
>>> model = persalys.SymbolicPhysicalModel('aModelPhys', [X0, X1, X2, X3], [Y0, Y1], ['sin(X0)+8*X1', 'X2 + X3'])

Create the observations:

>>> filename = 'data.csv'
>>> ot.Normal(8).getSample(10).exportToCSVFile(filename)
>>> aObs = persalys.Observations('anObs', model, filename, [2, 7], [3], ['X0', 'X2'], ['Y1'])

Methods

getClassName()

Accessor to the object's name.

getEffectiveInputIndices()

Effective indices accessor.

getFileName()

File name accessor.

getInputColumns()

Columns of the input variables accessor.

getInputNames()

Names of the input variables accessor.

getInputSample()

Input sample accessor.

getListXMax()

List of input values.

getListXMin()

List of input values.

getName()

Accessor to the object's name.

getOutputColumns()

Columns of the output variables accessor.

getOutputNames()

Names of the output variables accessor.

getOutputSample()

Output sample accessor.

getPhysicalModel()

Physical model accessor.

getPythonScript()

Python script accessor.

getSample()

Sample accessor.

getSampleFromFile()

Sample from the file accessor.

hasName()

Test if the object is named.

hasPhysicalModel()

Whether it contains a physical model.

initialize()

Empty the input and output samples.

isValid()

Whether the model is valid.

setColumns(inputColumns, inputNames, ...)

Columns and names of variables accessor.

setFileName(fileName)

File name accessor.

setInputSample(sample)

Input sample accessor.

setName(name)

Accessor to the object's name.

setOutputSample(sample)

Output sample accessor.

setSample

__init__(*args)
getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getEffectiveInputIndices()

Effective indices accessor.

Indices of non-const variables in the design.

Returns
indicesopenturns.Indices

Input sample and output sample

getFileName()

File name accessor.

Returns
fileNamestr

Name of the file containing data

getInputColumns()

Columns of the input variables accessor.

Returns
columnsopenturns.Indices

Columns of the input variables

getInputNames()

Names of the input variables accessor.

Returns
namesopenturns.Description

Names of the input variables

getInputSample()

Input sample accessor.

Returns
sampleopenturns.Sample

Input sample

getListXMax()

List of input values.

Returns
listSampleCollection

List of input values

getListXMin()

List of input values.

Returns
listSampleCollection

List of input values

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getOutputColumns()

Columns of the output variables accessor.

Returns
columnsopenturns.Indices

Columns of the output variables

getOutputNames()

Names of the output variables accessor.

Returns
namesopenturns.Description

Names of the output variables

getOutputSample()

Output sample accessor.

Returns
sampleopenturns.Sample

Output sample

getPhysicalModel()

Physical model accessor.

Returns
modelPhysicalModel

Physical model

getPythonScript()

Python script accessor.

Returns
scriptstr

Python script to rebuild the design of experiments

getSample()

Sample accessor.

Returns
sampleopenturns.Sample

Input sample and output sample

getSampleFromFile()

Sample from the file accessor.

Returns
sampleopenturns.Sample

Sample from the file

hasName()

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasPhysicalModel()

Whether it contains a physical model.

Returns
hasPhysicalModelbool

Whether it contains a physical model

initialize()

Empty the input and output samples.

isValid()

Whether the model is valid.

Returns
isValidbool

Whether the model is valid

setColumns(inputColumns, inputNames, outputColumns, outputNames)

Columns and names of variables accessor.

Parameters
inputColumnssequence of int

Columns of input variables

inNamessequence of str

Names of input variables

outputColumnssequence of int, optional

Columns of output variables

outNamessequence of str

Names of output variables

setFileName(fileName)

File name accessor.

Parameters
fileNamestr

Name of the file containing data

setInputSample(sample)

Input sample accessor.

Parameters
sampleopenturns.Sample

Input sample

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setOutputSample(sample)

Output sample accessor.

Parameters
sampleopenturns.Sample

Output sample