MultiObjectiveOptimizationAnalysis¶
- class persalys.MultiObjectiveOptimizationAnalysis(*args)¶
- Perform the multi-objective optimization analysis of a model. - Parameters:
- namestr
- Name 
- physicalModelPhysicalModel
- Physical model 
- solverNamestr
- Optimization algorithm name (optional). Use - GetSolverNames()to list available names.
 
- Attributes:
- AlgorithmDictionary
 
 - Methods - GetSolverNames(*args)- Accessor to the list of solver names. - addConstraint(*args)- Adds a constraint to the analysis - Accessor to the block size. - Accessor to bounds. - Accessor to the object's name. - Error message accessor. - Accessor to the number of generations. - Get the variables to analyse. - Accessor to maximum allowed absolute error. - Accessor to maximum allowed constraint error. - Accessor to maximum allowed relative error. - Accessor to maximum allowed residual error. - Test whether this is a minimization or maximization problem. - getName()- Accessor to the object's name. - Physical model accessor. - Accessor to popSize. - Physical model accessor. - Accessor to constraints equations - Accessor to result. - getSeed()- Accessor to random generator seed. - Accessor to solver name - Accessor to starting point. - Accessor to variable input names - Warning message accessor. - hasName()- Test if the object is named. - Whether the analysis has been run. - Whether the analysis involves reliability. - Whether the analysis is running. - Clears the current analysis constraints - run()- Launch the analysis. - setBlockSize(blockSize)- Accessor to the block size. - setBounds(bounds)- Accessor to bounds. - setGenerationNumber(generationNumber)- Accessor to the number of generations. - setInterestVariables(variablesNames)- Set the variables to analyse. - setMaximumAbsoluteError(maximumAbsoluteError)- Accessor to maximum allowed absolute error. - setMaximumCallsNumber(maximumCallsNumber)- Accessor to maximum allowed number of calls. - setMaximumConstraintError(maximumConstraintError)- Accessor to maximum allowed constraint error. - setMaximumRelativeError(maximumRelativeError)- Accessor to maximum allowed relative error. - setMaximumResidualError(maximumResidualError)- Accessor to maximum allowed residual error. - setMinimization(varNames)- Tell whether this is a minimization or maximization problem. - setName(name)- Accessor to the object's name. - setPopulationSize(popSize)- Accessor to popSize. - setSeed(seed)- Accessor to random generator seed. - setSolverName(name)- Accessor to solver name - setStartingPoint(startingPoint)- Accessor to starting point. - setVariableInputs(inputs)- Accessor to variable input names - defineProblem - getEqualityConstraints - getInequalityConstraints - getMaximumCallsNumber - getVariablesType - setVariablesType - Examples - >>> import openturns as ot >>> import persalys - Create the model: - >>> X0 = persalys.Input('X0', 0) >>> X1 = persalys.Input('X1', 0) >>> Y0 = persalys.Output('Y0') >>> Y1 = persalys.Output('Y1') >>> bounds = ot.Interval([0.0, 0.0], [5.0, 5.0]) >>> model = persalys.SymbolicPhysicalModel('aModelPhys', [X0, X1], [Y0, Y1], ['X0', 'var g := 1.0 + 9.0 * (X0 + X1); g * (1.0 - sqrt(X0 / g))']) - Create the analysis: - >>> analysis = persalys.MultiObjectiveOptimizationAnalysis('anAnalysis', model, 'nsga2') >>> analysis.setInterestVariables(['Y0', 'Y1']) >>> analysis.setBounds(bounds) >>> analysis.setPopulationSize(50) >>> analysis.setGenerationNumber(10) >>> analysis.setVariableInputs(['X0', 'X1']) >>> analysis.run() - Get the result: - >>> result = analysis.getResult() >>> finalPop = result.getFinalPop() >>> fronts = result.getFronts() - __init__(*args)¶
 - static GetSolverNames(*args)¶
- Accessor to the list of solver names. - Returns:
- namesDescription
- List of available solver names. 
 
- names
 
 - addConstraint(*args)¶
- Adds a constraint to the analysis - Parameters:
- constraintstr
- Constraint equation 
 
 
 - getBlockSize()¶
- Accessor to the block size. - Returns:
- blockSizeint
- Maximum number of samples queued for evaluation. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getErrorMessage()¶
- Error message accessor. - Returns:
- messagestr
- Error message if the analysis failed 
 
 
 - getGenerationNumber()¶
- Accessor to the number of generations. - Returns:
- generationNumberint
- number of generations for the evolving algorithm. 
 
 
 - getInterestVariables()¶
- Get the variables to analyse. - Returns:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - getMaximumAbsoluteError()¶
- Accessor to maximum allowed absolute error. - Returns:
- maximumAbsoluteErrorfloat
- Maximum allowed absolute error. 
 
 
 - getMaximumConstraintError()¶
- Accessor to maximum allowed constraint error. - Returns:
- maximumConstraintErrorfloat
- Maximum allowed constraint error. 
 
 
 - getMaximumRelativeError()¶
- Accessor to maximum allowed relative error. - Returns:
- maximumRelativeErrorfloat
- Maximum allowed relative error. 
 
 
 - getMaximumResidualError()¶
- Accessor to maximum allowed residual error. - Returns:
- maximumResidualErrorfloat
- Maximum allowed residual error. 
 
 
 - getMinimization()¶
- Test whether this is a minimization or maximization problem. - Returns:
- valuebool
- True if this is a minimization problem (default), False otherwise. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getPhysicalModel()¶
- Physical model accessor. - Returns:
- modelPhysicalModel
- Physical model 
 
- model
 
 - getPopulationSize()¶
- Accessor to popSize. - Returns:
- popSizeint
- Initial population sample size. 
 
 
 - getPythonScript()¶
- Physical model accessor. - Returns:
- scriptstr
- Python script to replay the analysis 
 
 
 - getRawEquations()¶
- Accessor to constraints equations - Returns:
- equationssequence of str
- Constraints equations 
 
 
 - getResult()¶
- Accessor to result. - Returns:
- resultMultiObjectiveOptimizationAnalysisResult
- multi-objective analysis result. 
 
- result
 
 - getSeed()¶
- Accessor to random generator seed. - Returns:
- seedint
- random generator seed for the evolving algorithm. 
 
 
 - getSolverName()¶
- Accessor to solver name - Returns:
- solverstr
- Solver name 
 
 
 - getVariableInputs()¶
- Accessor to variable input names - Returns:
- inputsDescription
- Variable input names. It is set by default to the list of inputs of the model. 
 
- inputs
 
 - getWarningMessage()¶
- Warning message accessor. - Returns:
- messagestr
- Warning message which can appear during the analysis computation 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasValidResult()¶
- Whether the analysis has been run. - Returns:
- hasValidResultbool
- Whether the analysis has already been run 
 
 
 - isReliabilityAnalysis()¶
- Whether the analysis involves reliability. - Returns:
- isReliabilityAnalysisbool
- Whether the analysis involves a reliability analysis 
 
 
 - isRunning()¶
- Whether the analysis is running. - Returns:
- isRunningbool
- Whether the analysis is running 
 
 
 - resetConstraints()¶
- Clears the current analysis constraints 
 - run()¶
- Launch the analysis. 
 - setBlockSize(blockSize)¶
- Accessor to the block size. - Parameters:
- blockSizeint
- Maximum number of samples queued for evaluation. 
 
 
 - setGenerationNumber(generationNumber)¶
- Accessor to the number of generations. - Parameters:
- generationNumberint
- number of generations for the evolving algorithm. 
 
 
 - setInterestVariables(variablesNames)¶
- Set the variables to analyse. - Parameters:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - setMaximumAbsoluteError(maximumAbsoluteError)¶
- Accessor to maximum allowed absolute error. - Parameters:
- maximumAbsoluteErrorfloat
- Maximum allowed absolute error. 
 
 
 - setMaximumCallsNumber(maximumCallsNumber)¶
- Accessor to maximum allowed number of calls. - Parameters:
- Nint
- Maximum allowed number of calls. 
 
 
 - setMaximumConstraintError(maximumConstraintError)¶
- Accessor to maximum allowed constraint error. - Parameters:
- maximumConstraintErrorfloat
- Maximum allowed constraint error. 
 
 
 - setMaximumRelativeError(maximumRelativeError)¶
- Accessor to maximum allowed relative error. - Parameters:
- maximumRelativeErrorfloat
- Maximum allowed relative error. 
 
 
 - setMaximumResidualError(maximumResidualError)¶
- Accessor to maximum allowed residual error. - Parameters:
- maximumResidualErrorfloat
- Maximum allowed residual error. 
 
 
 - setMinimization(varNames)¶
- Tell whether this is a minimization or maximization problem. - Parameters:
- minimizationbool
- True if this is a minimization problem, False otherwise. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setPopulationSize(popSize)¶
- Accessor to popSize. - Parameters:
- popSizeint
- Initial population sample size. 
 
 
 - setSeed(seed)¶
- Accessor to random generator seed. - Parameters:
- seedint
- random generator seed for the evolving algorithm. 
 
 
 - setSolverName(name)¶
- Accessor to solver name - Parameters:
- solverstr
- Solver name. Use - GetSolverNames()to list available names.
 
 
 - setStartingPoint(startingPoint)¶
- Accessor to starting point. - Parameters:
- startingPointsequence of float
- Starting point. 
 
 
 - setVariableInputs(inputs)¶
- Accessor to variable input names - Parameters:
- inputssequence of str
- Variable input names. It is set by default to the list of inputs of the model. 
 
 
 
