FieldModelEvaluation¶
- class persalys.FieldModelEvaluation(*args)¶
- Generate the evaluation of a model with mesh. - Parameters:
- namestr
- Name 
- modelPhysicalModel
- Model containing a mesh 
- valuessequence of float
- Input values (optional) 
 
 - Methods - Block size accessor. - Accessor to the object's name. - Design of experiments accessor. - Error message accessor. - Failed input sample accessor. - Get the variables to analyse. - getName()- Accessor to the object's name. - Not evaluated input sample accessor. - Input sample accessor. - Physical model accessor. - Physical model accessor. - getSeed()- Seed accessor. - Values accessor. - Warning message accessor. - hasName()- Test if the object is named. - Whether the analysis has been run. - Whether the analysis involves reliability. - Whether the analysis is running. - run()- Launch the analysis. - setBlockSize(size)- Block size accessor. - setEvaluations(outputSample)- Add evaluations for the design of experiments - setInterestVariables(variablesNames)- Set the variables to analyse. - setName(name)- Accessor to the object's name. - setSeed(seed)- Seed accessor. - setValues(values)- Values accessor. - GetDefaultBounds - getProcessSample - getResult - Examples - >>> import openturns as ot >>> import persalys - Create the model: - >>> meshModel = persalys.GridMeshModel(ot.Interval(0., 12.), [5]) - >>> z0 = persalys.Input('z0', 100, '') >>> v0 = persalys.Input('v0', 55, '') >>> m = persalys.Input('m', 80, '') >>> c = persalys.Input('c', 15, '') >>> z = persalys.Output('z', '') >>> formula = ['max(0, z0 + (m * 9.81 / c) * t + (m / c) * (v0 - (m * 9.81 / c)) * (1 - exp(-t * c / m)))'] - >>> model = persalys.SymbolicFieldModel('aModel', meshModel, [z0, v0, m, c], [z], formula) - Create the analysis: - >>> analysis = persalys.FieldModelEvaluation('analysis', model) >>> analysis.run() - Get the result: - >>> result = analysis.getResult() - __init__(*args)¶
 - getBlockSize()¶
- Block size accessor. - Returns:
- blockSizepositive int
- Number of terms analysed together. It is set by default to 1. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getErrorDescription()¶
- Design of experiments accessor. - Returns:
- errorDescDescription
- Descriptioncontaining messages from failed points.
 
- errorDesc
 
 - getErrorMessage()¶
- Error message accessor. - Returns:
- messagestr
- Error message if the analysis failed 
 
 
 - getFailedInputSample()¶
- Failed input sample accessor. - Returns:
- sampleopenturns.Sample
- Sample with the failed input values 
 
- sample
 
 - getInterestVariables()¶
- Get the variables to analyse. - Returns:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getNotEvaluatedInputSample()¶
- Not evaluated input sample accessor. - Returns:
- sampleopenturns.Sample
- Points of the design of experiments which were not evaluated 
 
- sample
 
 - getOriginalInputSample()¶
- Input sample accessor. - Returns:
- sampleopenturns.Sample
- Input sample. 
 
- sample
 
 - getPhysicalModel()¶
- Physical model accessor. - Returns:
- modelPhysicalModel
- Physical model 
 
- model
 
 - getPythonScript()¶
- Physical model accessor. - Returns:
- scriptstr
- Python script to replay the analysis 
 
 
 - getSeed()¶
- Seed accessor. - Returns:
- seedint
- Seed value 
 
 
 - getValues()¶
- Values accessor. - Returns:
- valuesopenturns.Point
- Inputs values used in the case where there is at least a constant variable. 
 
- values
 
 - getWarningMessage()¶
- Warning message accessor. - Returns:
- messagestr
- Warning message which can appear during the analysis computation 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasValidResult()¶
- Whether the analysis has been run. - Returns:
- hasValidResultbool
- Whether the analysis has already been run 
 
 
 - isReliabilityAnalysis()¶
- Whether the analysis involves reliability. - Returns:
- isReliabilityAnalysisbool
- Whether the analysis involves a reliability analysis 
 
 
 - isRunning()¶
- Whether the analysis is running. - Returns:
- isRunningbool
- Whether the analysis is running 
 
 
 - run()¶
- Launch the analysis. 
 - setBlockSize(size)¶
- Block size accessor. - Parameters:
- blockSizepositive int
- Number of terms analysed together. It is set by default to 1. 
 
 
 - setEvaluations(outputSample)¶
- Add evaluations for the design of experiments - Parameters:
- outputSample:py:openturns.Sample
- sample containing values for the output variables 
 
- outputSample:py:
 
 - setInterestVariables(variablesNames)¶
- Set the variables to analyse. - Parameters:
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setSeed(seed)¶
- Seed accessor. - Parameters:
- seedint
- Seed value 
 
 
 - setValues(values)¶
- Values accessor. - Parameters:
- valuesopenturns.Point
- Inputs values used in the case where there is at least a constant variable. 
 
- values
 
 
