DataSensitivityAnalysis¶
- class persalys.DataSensitivityAnalysis(*args)¶
Perform a sensitivity analysis on a design of experiments. see
openturns.experimental.RankSobolSensitivityAlgorithm
for more details.- Parameters:
- namestr
Name of the analysis.
- design
DesignOfExperiment
Design of experiments to analyze.
Examples
>>> import openturns as ot >>> import persalys >>> from openturns.usecases import ishigami_function
Create the csv:
>>> im = ishigami_function.IshigamiModel() >>> x = im.inputDistribution.getSample(100) >>> y = im.model(x) >>> data_sample = x >>> data_sample.stack(y) >>> data_sample.exportToCSVFile('data.csv')
Create the model:
>>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2], [3])
Create and run the analysis:
>>> analysis = persalys.DataSensitivityAnalysis('sensitivity', model) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> if result.isIndependent(): ... # The inputs need to be independant for the result to be valid ... firstOrderIndices = result.getFirstOrderIndices() ... firstOrderIndicesInterval = result.getFirstOrderIndicesInterval() ... else: ... independenceWarning = result.getIndependenceWarningMessage()
Methods
Accessor to the object's name.
Design of experiments accessor.
Error message accessor.
Get the variables to analyse.
getName
()Accessor to the object's name.
Physical model accessor.
Get the result of the sensitivity analysis.
Warning message accessor.
hasName
()Test if the object is named.
Whether the analysis has been run.
Whether the analysis involves reliability.
Whether the analysis is running.
run
()Launch the analysis.
setInterestVariables
(variablesNames)Set the variables to analyse.
setName
(name)Accessor to the object's name.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getDesignOfExperiment()¶
Design of experiments accessor.
- Returns:
- model
DesignOfExperiment
Design of experiments
- model
- getErrorMessage()¶
Error message accessor.
- Returns:
- messagestr
Error message if the analysis failed
- getInterestVariables()¶
Get the variables to analyse.
- Returns:
- variablesNamessequence of str
Names of the variables to analyse
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getPythonScript()¶
Physical model accessor.
- Returns:
- scriptstr
Python script to replay the analysis
- getResult()¶
Get the result of the sensitivity analysis.
- Returns:
- result
DataSensitivityAnalysisResult
Result of the sensitivity analysis.
- result
- getWarningMessage()¶
Warning message accessor.
- Returns:
- messagestr
Warning message which can appear during the analysis computation
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- hasValidResult()¶
Whether the analysis has been run.
- Returns:
- hasValidResultbool
Whether the analysis has already been run
- isReliabilityAnalysis()¶
Whether the analysis involves reliability.
- Returns:
- isReliabilityAnalysisbool
Whether the analysis involves a reliability analysis
- isRunning()¶
Whether the analysis is running.
- Returns:
- isRunningbool
Whether the analysis is running
- run()¶
Launch the analysis.
- setInterestVariables(variablesNames)¶
Set the variables to analyse.
- Parameters:
- variablesNamessequence of str
Names of the variables to analyse
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.