CalibrationAnalysis¶
- 
class persalys.CalibrationAnalysis(*args)¶
- Run a calibration analysis. - Parameters
- namestr
- Name 
- observationsObservations
- Observations of at least one input and one output 
 
 - Examples - >>> import openturns as ot >>> import persalys - Create the Chaboche model: - >>> R = persalys.Input('R', 700e6, ot.LogNormalMuSigma(750e6, 11e6).getDistribution(), 'Parameter R') >>> C = persalys.Input('C', 2500e6, ot.Normal(2750e6, 250e6), 'Parameter C') >>> gamma = persalys.Input('gam', 8., ot.Normal(10, 2), 'Parameter gamma') >>> dist_strain = ot.Uniform(0, 0.07) >>> strain = persalys.Input('strain', 0., dist_strain, 'Strain') >>> sigma = persalys.Output('sigma', 'Stress (Pa)') - >>> model = persalys.SymbolicPhysicalModel('model1', [R, C, gamma, strain], [sigma], ['R + C / gam * (1 - exp(-gam * strain))']) - Generate observations: - >>> nbObs = 100 >>> strainObs = dist_strain.getSample(nbObs) >>> strainObs.setDescription(['strain']) >>> stressSampleNoise = ot.Normal(0., 40.e6).getSample(nbObs) >>> stressSample = ot.ParametricFunction(model.getFunction(), [0, 1, 2], [750e6, 2750e6, 10.])(strainObs) >>> stressObs = stressSample + stressSampleNoise - >>> observations = persalys.Observations('obs1', model, strainObs, stressObs) - Process a calibration analysis: - >>> analysis = persalys.CalibrationAnalysis('myAnalysis', observations) >>> analysis.run() - Get the result: - >>> result = analysis.getResult() >>> thetaStar = result.getCalibrationResult().getParameterMAP() - Attributes
- thisown
- The membership flag 
 
 - Methods - Get the list of available method names. - Accessor to the bootstrap size used to sample the posterior distribution. - Inputs to calibrate accessor. - Accessor to the object’s name. - Confidence interval length accessor. - Accessor to the output observations error covariance. - Error message accessor. - Fixed inputs accessor. - getId()- Accessor to the object’s id. - Get the variables to analyse. - Accessor to the method name - getName()- Accessor to the object’s name. - Accessor to the data to be fitted. - Accessor to the optimization algorithm used by non linear algorithms. - Physical model accessor. - Accessor to the prior distribution. - Physical model accessor. - Result accessor. - Accessor to the object’s shadowed id. - Accessor to the object’s visibility state. - Warning message accessor. - hasName()- Test if the object is named. - Whether the analysis has been run. - Test if the object has a distinguishable name. - Whether the analysis involves reliability. - Whether the analysis is running. - run()- Launch the analysis. - setBootStrapSize(arg2)- Accessor to the bootstrap size used to sample the posterior distribution. - setCalibratedInputs(*args)- Accessor to the inputs to calibrate and the fixed inputs. - Confidence interval length accessor. - setErrorCovariance(matrix)- Accessor to the output observations error covariance. - setInterestVariables(variablesNames)- Set the variables to analyse. - setMethodName(name)- Accessor to the method name - setName(name)- Accessor to the object’s name. - setOptimizationAlgorithm(solver)- Accessor to the optimization algorithm used by non linear algorithms. - setShadowedId(id)- Accessor to the object’s shadowed id. - setVisibility(visible)- Accessor to the object’s visibility state. - canBeLaunched - getElapsedTime - getParentObserver - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
static GetMethodNames()¶
- Get the list of available method names. - Returns
- namesDescription
- List of available calibration method names. 
 
- names
 
 - 
getBootStrapSize()¶
- Accessor to the bootstrap size used to sample the posterior distribution. - Returns
- sizeint
- Bootstrap size used to sample the posterior distribution by the non linear algorithms. A value of 0 means that no bootstrap has been done but a linear approximation has been used to get the posterior distribution, using the GaussianLinearCalibration or LinearLeastSquaresCalibration algorithm at the maximum a posteriori estimate. The value 1 is not allowed at this time. 
 
 
 - 
getCalibratedInputs()¶
- Inputs to calibrate accessor. - Returns
- inputsopenturns.Description
- Names of the input variables to calibrate 
 
- inputs
 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getConfidenceIntervalLength()¶
- Confidence interval length accessor. - Returns
- lengthfloat
- Length of the confidence interval of the posterior distribution. It is set by default to 0.95. 
 
 
 - 
getErrorCovariance()¶
- Accessor to the output observations error covariance. - Returns
- matrixopenturns.CovarianceMatrix
- The covariance matrix of the gaussian distribution of the output observations error. Used by the gaussian algorithms. 
 
- matrix
 
 - 
getErrorMessage()¶
- Error message accessor. - Returns
- messagestr
- Error message if the analysis failed 
 
 
 - 
getFixedInputs()¶
- Fixed inputs accessor. - Returns
- inputsopenturns.PointWithDescription
- Fixed input names and values 
 
- inputs
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getInterestVariables()¶
- Get the variables to analyse. - Returns
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - 
getMethodName()¶
- Accessor to the method name - Returns
- methodstr
- Method name. Default is ‘LeastSquaresLinear’. Use - GetMethodNames()to list available names.
 
 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getOptimizationAlgorithm()¶
- Accessor to the optimization algorithm used by non linear algorithms. - Returns
- algorithmopenturns.OptimizationAlgorithm
- Optimization algorithm used by non linear algorithms. The optimization problem and the starting point are not taken into account. 
 
- algorithm
 
 - 
getPhysicalModel()¶
- Physical model accessor. - Returns
- modelPhysicalModel
- Physical model 
 
- model
 
 - 
getPriorDistribution()¶
- Accessor to the prior distribution. - Returns
- distributionopenturns.Distribution
- Prior distribution 
 
- distribution
 
 - 
getPythonScript()¶
- Physical model accessor. - Returns
- scriptstr
- Python script to replay the analysis 
 
 
 - 
getResult()¶
- Result accessor. - Returns
- resultCalibrationAnalysisResult
- Result 
 
- result
 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
getWarningMessage()¶
- Warning message accessor. - Returns
- messagestr
- Warning message which can appear during the analysis computation 
 
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasValidResult()¶
- Whether the analysis has been run. - Returns
- hasValidResultbool
- Whether the analysis has already been run 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
isReliabilityAnalysis()¶
- Whether the analysis involves reliability. - Returns
- isReliabilityAnalysisbool
- Whether the analysis involves a reliability analysis 
 
 
 - 
isRunning()¶
- Whether the analysis is running. - Returns
- isRunningbool
- Whether the analysis is running 
 
 
 - 
run()¶
- Launch the analysis. 
 - 
setBootStrapSize(arg2)¶
- Accessor to the bootstrap size used to sample the posterior distribution. - Parameters
- sizeint
- Bootstrap size used to sample the posterior distribution by the non linear algorithms. A value of 0 means that no bootstrap has been done but a linear approximation has been used to get the posterior distribution, using the GaussianLinearCalibration or LinearLeastSquaresCalibration algorithm at the maximum a posteriori estimate. The value 1 is not allowed at this time. 
 
 
 - 
setCalibratedInputs(*args)¶
- Accessor to the inputs to calibrate and the fixed inputs. - Parameters
- calibratedInputsequence of str
- Names of the input variables to calibrate 
- priorDistributionopenturns.Distribution
- Prior distribution. Its dimension must equal to the number of variables to calibrate 
- fixedInputssequence of str, optional
- Names of the input variables to fix 
- valuessequence of float, optional
- Values of the fixed inputs 
 
 
 - 
setConfidenceIntervalLength(arg2)¶
- Confidence interval length accessor. - Parameters
- lengthfloat
- Length of the confidence interval of the posterior distribution. It is set by default to 0.95. 
 
 
 - 
setErrorCovariance(matrix)¶
- Accessor to the output observations error covariance. - Parameters
- matrixopenturns.CovarianceMatrix
- The covariance matrix of the gaussian distribution of the output observations error. Used by the gaussian algorithms. 
 
- matrix
 
 - 
setInterestVariables(variablesNames)¶
- Set the variables to analyse. - Parameters
- variablesNamessequence of str
- Names of the variables to analyse 
 
 
 - 
setMethodName(name)¶
- Accessor to the method name - Parameters
- methodstr
- Method name. Default is ‘LeastSquaresLinear’. Use - GetMethodNames()to list available names.
 
 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setOptimizationAlgorithm(solver)¶
- Accessor to the optimization algorithm used by non linear algorithms. - Parameters
- algorithmopenturns.OptimizationAlgorithm
- Optimization algorithm used by non linear algorithms. The optimization problem and the starting point are not taken into account. 
 
- algorithm
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 - 
property thisown¶
- The membership flag 
 
