SymbolicFieldModel¶
- class persalys.SymbolicFieldModel(*args)¶
Create a physical model defined by analytical formulas and a mesh.
- Parameters
Examples
>>> import openturns as ot >>> import persalys
Create the mesh model:
>>> meshModel = persalys.GridMeshModel([persalys.Variable('x', 'aDescription')], ot.Interval(0., 12.), [10])
Create the model:
>>> z0 = persalys.Input('z0', 100) >>> v0 = persalys.Input('v0', 55) >>> m = persalys.Input('m', 80) >>> c = persalys.Input('c', 15) >>> z = persalys.Output('z') >>> formula = ['max(0, z0 + (m * 9.81 / c) * x + (m / c) * (v0 - (m * 9.81 / c)) * (1 - exp(-x * c / m)))'] >>> model = persalys.SymbolicFieldModel('model', meshModel, [z0, v0, m, c], [z], formula)
>>> y = model.getPointToFieldFunction()([100, 55, 80, 15])
- Attributes
thisown
The membership flag
Methods
addInput
(input)Add an input variable.
addOutput
(output)Add an output variable.
Remove all the input variables.
Remove all the output variables.
Accessor to the object's name.
Copula accessor.
Distribution accessor.
Evaluation time accessor.
getFormula
(outputName)Output formula accessor.
Formulas accessor.
getFunction
(*args)Accessor to the underlying function.
getId
()Accessor to the object's id.
getInputByName
(*args)Input variable accessor.
Number of input variables accessor.
Input variable names accessor.
Input random vector accessor.
Input variables accessor.
Mesh model accessor.
getName
()Accessor to the object's name.
getOutputByName
(*args)Output variable accessor.
Number of output variables accessor.
Output variable names accessor.
getOutputRandomVector
(outputNames)Output random vector accessor.
Output variables accessor.
getPointToFieldFunction
(*args)Accessor to the underlying function.
Number of concurrent processes.
Python script accessor.
getRestrictedFunction
(*args)Accessor to the function restricted to its stochastic inputs.
getRestrictedPointToFieldFunction
(outputNames)Accessor to the field function restricted to its stochastic inputs.
Accessor to the selected outputs names.
Accessor to the object's shadowed id.
Accessor to the names of the stochastic input variables.
Accessor to the object's visibility state.
hasInputNamed
(inputName)Check if an input has the given name.
hasMesh
()Whether the model has a mesh.
hasName
()Test if the object is named.
hasOutputNamed
(outputName)Check if an output has the given name.
Whether it contains stochastic variables.
Test if the object has a distinguishable name.
Whether the evaluations of the model are parallelized.
isValid
()Whether it is valid.
removeInput
(inputName)Remove an input variable.
removeOutput
(outputName)Remove an output variable.
selectOutput
(outputName, selected)Select output.
setCopula
(inputNames, copula)Copula accessor.
setDistribution
(inputName, distribution)Input distribution accessor.
setDistributionParametersType
(inputName, ...)Input distribution parameter type accessor.
setEvalTime
(evalTime)Evaluation time accessor.
setFiniteDifferenceStep
(inputName, step)Finite difference step accessor.
setFormula
(outputName, formula)Output formula accessor.
setFormulas
(formulas)Formulas accessor.
setInputDescription
(inputName, description)Input description accessor.
setInputName
(inputName, newName)Input variable name accessor.
setInputStochastic
(inputName, stoch)Whether the input variable is stochastic.
setInputValue
(inputName, value)Input variable value accessor.
setInputs
(inputs)Input variables accessor.
setMeshModel
(meshModel)Mesh model accessor.
setName
(name)Accessor to the object's name.
setOutputDescription
(outputName, description)Output description accessor.
setOutputName
(outputName, newName)Output variable name accessor.
setOutputValue
(outputName, value)Output variable name accessor.
setOutputs
(outputs)Output variables accessor.
setParallel
(flag)Whether the evaluations of the model are parallelized.
setProcessNumber
(processNumber)Number of concurrent processes.
setShadowedId
(id)Accessor to the object's shadowed id.
setVisibility
(visible)Accessor to the object's visibility state.
- __init__(*args)¶
- clearInputs()¶
Remove all the input variables.
- clearOutputs()¶
Remove all the output variables.
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getCopula()¶
Copula accessor.
- Parameters
- copula
openturns.Copula
The copula
- copula
- getDistribution()¶
Distribution accessor.
- Parameters
- Distribution
openturns.ComposedDistribution
The composed distribution (marginals and dependence)
- Distribution
- getEvalTime()¶
Evaluation time accessor.
- Returns
- evalTimefloat
Evaluation time
- getFormula(outputName)¶
Output formula accessor.
- Parameters
- namestr
Variable name
- Returns
- formulastr
Formula text
- getFormulas()¶
Formulas accessor.
- Returns
- formulas
openturns.Description
Output formulas
- formulas
- getFunction(*args)¶
Accessor to the underlying function.
- Parameters
- outputNamessequence of str
Names of the outputs to be evaluated (optional)
- Returns
- function
openturns.Function
Function evaluating the outputs
- function
- getId()¶
Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
- getInputByName(*args)¶
Input variable accessor.
- Parameters
- namestr
Variable name
- Returns
- input
Input
Input variable
- input
- getInputDimension()¶
Number of input variables accessor.
- Returns
- dimensionint
Number of input variables
- getInputNames()¶
Input variable names accessor.
- Returns
- names
openturns.Description
Input variable names
- names
- getInputRandomVector()¶
Input random vector accessor.
- Returns
- names
openturns.RandomVector
Input random vector
- names
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getOutputByName(*args)¶
Output variable accessor.
- Parameters
- namestr
Variable name
- Returns
- input
Output
Output variable
- input
- getOutputDimension()¶
Number of output variables accessor.
- Returns
- dimensionint
Number of output variables
- getOutputNames()¶
Output variable names accessor.
- Returns
- names
openturns.Description
Output variable names
- names
- getOutputRandomVector(outputNames)¶
Output random vector accessor.
- Returns
- names
openturns.RandomVector
Output random vector
- names
- getPointToFieldFunction(*args)¶
Accessor to the underlying function.
- Parameters
- outputNamessequence of str
Names of the outputs to be evaluated (optional)
- Returns
- function
openturns.PointToFieldFunction
Function evaluating the outputs along the mesh nodes
- function
- getProcessNumber()¶
Number of concurrent processes.
- Returns
- process_numberint
Maximum number of processes
- getPythonScript()¶
Python script accessor.
- Returns
- scriptstr
Python script to replay the model
- getRestrictedFunction(*args)¶
Accessor to the function restricted to its stochastic inputs.
- Parameters
- outputNamessequence of str
Output variables (optional)
- Returns
- restricted
openturns.Function
Stochastic function
- restricted
- getRestrictedPointToFieldFunction(outputNames)¶
Accessor to the field function restricted to its stochastic inputs.
- Parameters
- outputNamessequence of str
Output variables (optional)
- Returns
- restricted
openturns.PointToFieldFunction
Stochastic field function (for model with mesh)
- restricted
- getSelectedOutputsNames()¶
Accessor to the selected outputs names.
- Returns
- names
openturns.Description
Selected outputs names
- names
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
- getStochasticInputNames()¶
Accessor to the names of the stochastic input variables.
- Returns
- names
openturns.Description
Names of the stochastic input variables
- names
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
- hasInputNamed(inputName)¶
Check if an input has the given name.
- Parameters
- namestr
Variable name
- Returns
- hasbool
Whether an input has the given name
- hasMesh()¶
Whether the model has a mesh.
- Returns
- hasMeshbool
Whether the model has a mesh
- hasName()¶
Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
- hasOutputNamed(outputName)¶
Check if an output has the given name.
- Parameters
- namestr
Variable name
- Returns
- hasbool
Whether an output has the given name
- hasStochasticInputs()¶
Whether it contains stochastic variables.
- Returns
- hasbool
Whether it contains stochastic variables
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
- isParallel()¶
Whether the evaluations of the model are parallelized.
- Returns
- isParallelbool
Whether the evaluations of the model are parallelized (available only for the Python model)
- isValid()¶
Whether it is valid.
- Returns
- isValidbool
Whether it is valid
- removeInput(inputName)¶
Remove an input variable.
- Parameters
- namestr
Variable name
- removeOutput(outputName)¶
Remove an output variable.
- Parameters
- namestr
Variable name
- selectOutput(outputName, selected)¶
Select output.
- Parameters
- namestr
Output name
- isSelectedbool
Whether it is selected
- setCopula(inputNames, copula)¶
Copula accessor.
- Parameters
- copula
openturns.Copula
The copula
- copula
- setDistribution(inputName, distribution)¶
Input distribution accessor.
- Parameters
- namestr
Variable name
- distribution
openturns.Distribution
Variable distribution
- setDistributionParametersType(inputName, distributionParametersType)¶
Input distribution parameter type accessor.
- Parameters
- namestr
Variable name
- parametersTypeint
Distribution parameter type accessor
- setEvalTime(evalTime)¶
Evaluation time accessor.
- Parameters
- evalTimefloat
Evaluation time
- setFiniteDifferenceStep(inputName, step)¶
Finite difference step accessor.
- Parameters
- namestr
Variable name
- stepfloat
Finite difference step used to define the gradient of the model’s function
- setFormula(outputName, formula)¶
Output formula accessor.
- Parameters
- namestr
Variable name
- formulastr
Formula text
- setFormulas(formulas)¶
Formulas accessor.
- Parameters
- formulassequence of str
Output formulas
- setInputDescription(inputName, description)¶
Input description accessor.
- Parameters
- namestr
Variable name
- descriptionstr
Description text
- setInputName(inputName, newName)¶
Input variable name accessor.
- Parameters
- namestr
Variable name
- newNamestr
New name
- setInputStochastic(inputName, stoch)¶
Whether the input variable is stochastic.
- Parameters
- namestr
Variable name
- isStochasticbool
Whether the input variable is stochastic
- setInputValue(inputName, value)¶
Input variable value accessor.
- Parameters
- namestr
Variable name
- valuefloat
New value
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
- setOutputDescription(outputName, description)¶
Output description accessor.
- Parameters
- namestr
Variable name
- descriptionstr
Description text
- setOutputName(outputName, newName)¶
Output variable name accessor.
- Parameters
- namestr
Variable name
- newNamestr
New name
- setOutputValue(outputName, value)¶
Output variable name accessor.
- Parameters
- namestr
Variable name
- valuefloat
New value
- setOutputs(outputs)¶
Output variables accessor.
- Parameters
- outputssequence of
Output
Output variables
- outputssequence of
- setParallel(flag)¶
Whether the evaluations of the model are parallelized.
- Parameters
- isParallelbool
Whether the evaluations of the model are parallelized
Notes
This is only implemented for the Python model. Also, on Windows platforms, ProcessPoolExecutor startup time being much higher, you may want to evaluate enough points in batch rather than many small blocks. Refer to the setBlockSize method of the various algorithms.
- setProcessNumber(processNumber)¶
Number of concurrent processes.
- Parameters
- process_numberint
Maximum number of processes
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.
- property thisown¶
The membership flag