ProbabilisticDesignOfExperiment

class persalys.ProbabilisticDesignOfExperiment(*args)

Create a probabilistic design of experiments.

Available constructors:

ProbabilisticDesignOfExperiment(name, physicalModel)

ProbabilisticDesignOfExperiment(name, physicalModel, size, designName)

Parameters
namestr

Name

physicalModelPhysicalModel

Physical model with at least a stochastic input variable.

sizepositive int

Number of points in the design.

designNamestr

Name of the design. Use GetDesignNames() to list available names.

Examples

>>> import openturns as ot
>>> import persalys

Create the model:

>>> R = persalys.Input('R', 0., ot.LogNormalMuSigma(300., 30., 0.).getDistribution(), 'Yield strength')
>>> F = persalys.Input('F', 0., ot.Normal(75000., 5000.), 'Traction load')
>>> G = persalys.Output('G', 'deviation')
>>> myPhysicalModel = persalys.SymbolicPhysicalModel('myPhysicalModel', [R, F], [G], ['R-F/(pi_*100.0)'])

Create the design of experiments:

>>> myDOE = persalys.ProbabilisticDesignOfExperiment('myDOE', myPhysicalModel, 10, 'MONTE_CARLO')
Attributes
thisown

The membership flag

Methods

GetDesignNames()

Accessor to the list of designs provided by ProbabilisticDesignOfExperiment.

getBlockSize()

Block size accessor.

getClassName()

Accessor to the object's name.

getDesignName()

Accessor to the design name.

getErrorMessage()

Error message accessor.

getFailedInputSample()

Failed input sample accessor.

getId()

Accessor to the object's id.

getInterestVariables()

Get the variables to analyse.

getName()

Accessor to the object's name.

getNotEvaluatedInputSample()

Not evaluated input sample accessor.

getOriginalInputSample()

Input sample accessor.

getPhysicalModel()

Physical model accessor.

getPythonScript()

Physical model accessor.

getSeed()

Seed accessor.

getShadowedId()

Accessor to the object's shadowed id.

getSize()

Accessor to the size of the generated sample.

getVisibility()

Accessor to the object's visibility state.

getWarningMessage()

Warning message accessor.

hasName()

Test if the object is named.

hasValidResult()

Whether the analysis has been run.

hasVisibleName()

Test if the object has a distinguishable name.

isReliabilityAnalysis()

Whether the analysis involves reliability.

isRunning()

Whether the analysis is running.

run()

Launch the analysis.

setBlockSize(size)

Block size accessor.

setDesignName(name)

Accessor to the design name.

setInterestVariables(variablesNames)

Set the variables to analyse.

setName(name)

Accessor to the object's name.

setSeed(seed)

Initialize the random generator seed.

setShadowedId(id)

Accessor to the object's shadowed id.

setSize(size)

Accessor to the size of the generated sample.

setVisibility(visible)

Accessor to the object's visibility state.

GetSpaceFillings

canBeLaunched

getElapsedTime

getErrorDescription

getMCLHSSize

getParentObserver

getResult

getSpaceFilling

setSpaceFilling

__init__(*args)
static GetDesignNames()

Accessor to the list of designs provided by ProbabilisticDesignOfExperiment.

Returns
namesopenturns.Description

List of design names provided by ProbabilisticDesignOfExperiment.

Examples

>>> import persalys
>>> print(persalys.ProbabilisticDesignOfExperiment.GetDesignNames())
[LHS,SALHS,MCLHS,MONTE_CARLO,QUASI_MONTE_CARLO]
getBlockSize()

Block size accessor.

Returns
blockSizepositive int

Number of terms analysed together. It is set by default to 1.

getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getDesignName()

Accessor to the design name.

Returns
designNamestr

The design name.

getErrorMessage()

Error message accessor.

Returns
messagestr

Error message if the analysis failed

getFailedInputSample()

Failed input sample accessor.

Returns
sampleopenturns.Sample

Sample with the failed input values

getId()

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getInterestVariables()

Get the variables to analyse.

Returns
variablesNamessequence of str

Names of the variables to analyse

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getNotEvaluatedInputSample()

Not evaluated input sample accessor.

Returns
sampleopenturns.Sample

Points of the design of experiments which were not evaluated

getOriginalInputSample()

Input sample accessor.

Returns
sampleopenturns.Sample

Input sample.

getPhysicalModel()

Physical model accessor.

Returns
modelPhysicalModel

Physical model

getPythonScript()

Physical model accessor.

Returns
scriptstr

Python script to replay the analysis

getSeed()

Seed accessor.

Returns
seedint

Seed value

getShadowedId()

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getSize()

Accessor to the size of the generated sample.

Returns
sizepositive int

Number of points in the design.

getVisibility()

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

getWarningMessage()

Warning message accessor.

Returns
messagestr

Warning message which can appear during the analysis computation

hasName()

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasValidResult()

Whether the analysis has been run.

Returns
hasValidResultbool

Whether the analysis has already been run

hasVisibleName()

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

isReliabilityAnalysis()

Whether the analysis involves reliability.

Returns
isReliabilityAnalysisbool

Whether the analysis involves a reliability analysis

isRunning()

Whether the analysis is running.

Returns
isRunningbool

Whether the analysis is running

run()

Launch the analysis.

setBlockSize(size)

Block size accessor.

Parameters
blockSizepositive int

Number of terms analysed together. It is set by default to 1.

setDesignName(name)

Accessor to the design name.

Parameters
designNamestr

The design name. Use GetDesignNames() to list available names.

setInterestVariables(variablesNames)

Set the variables to analyse.

Parameters
variablesNamessequence of str

Names of the variables to analyse

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setSeed(seed)

Initialize the random generator seed.

Parameters
seedint

Seed value.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setSize(size)

Accessor to the size of the generated sample.

Parameters
sizepositive int

Number of points in the design.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.

property thisown

The membership flag