InferenceAnalysis¶
- class persalys.InferenceAnalysis(*args)¶
Perform a Kolmogorov goodness-of-fit test for 1-D continuous distributions.
- Parameters
- namestr
Name
- design
DesignOfExperiment
Design of experiments
Examples
>>> import openturns as ot >>> import persalys >>> ot.RandomGenerator.SetSeed(0)
Create the model:
>>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])
Create the Inference Analysis:
>>> analysis = persalys.InferenceAnalysis('analysis', model) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> resultX0 = result.getFittingTestResultForVariable('X0')
- Attributes
thisown
The membership flag
Methods
Accessor to the object's name.
Design of experiments accessor.
getDistributionsFactories
(variableName)Get the sequence of distributions to test for a variable.
Error message accessor.
getId
()Accessor to the object's id.
Get the variables to analyse.
getLevel
()Level accessor.
getName
()Accessor to the object's name.
Physical model accessor.
Result accessor.
Accessor to the object's shadowed id.
Accessor to the object's visibility state.
Warning message accessor.
hasName
()Test if the object is named.
Whether the analysis has been run.
Test if the object has a distinguishable name.
Whether the analysis involves reliability.
Whether the analysis is running.
run
()Launch the analysis.
setDistributionsFactories
(variableName, ...)Set the sequence of distributions to test for a variable.
setInterestVariables
(variablesNames)Set the variables to analyse.
setLevel
(level)Level accessor.
setName
(name)Accessor to the object's name.
setShadowedId
(id)Accessor to the object's shadowed id.
setVisibility
(visible)Accessor to the object's visibility state.
canBeLaunched
getElapsedTime
getEstimateParametersConfidenceInterval
getParametersConfidenceIntervalLevel
getParentObserver
setEstimateParametersConfidenceInterval
setParametersConfidenceIntervalLevel
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getDesignOfExperiment()¶
Design of experiments accessor.
- Returns
- model
DesignOfExperiment
Design of experiments
- model
- getDistributionsFactories(variableName)¶
Get the sequence of distributions to test for a variable.
- Parameters
- variablestr
Name of the variable
- Returns
- factoriessequence of
openturns.DistributionFactory
Distributions to test
- factoriessequence of
- getErrorMessage()¶
Error message accessor.
- Returns
- messagestr
Error message if the analysis failed
- getId()¶
Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
- getInterestVariables()¶
Get the variables to analyse.
- Returns
- variablesNamessequence of str
Names of the variables to analyse
- getLevel()¶
Level accessor.
- Returns
- levelfloat, , optional
The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getPythonScript()¶
Physical model accessor.
- Returns
- scriptstr
Python script to replay the analysis
- getResult()¶
Result accessor.
- Returns
- result
InferenceResult
Result.
- result
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
- getWarningMessage()¶
Warning message accessor.
- Returns
- messagestr
Warning message which can appear during the analysis computation
- hasName()¶
Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
- hasValidResult()¶
Whether the analysis has been run.
- Returns
- hasValidResultbool
Whether the analysis has already been run
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
- isReliabilityAnalysis()¶
Whether the analysis involves reliability.
- Returns
- isReliabilityAnalysisbool
Whether the analysis involves a reliability analysis
- isRunning()¶
Whether the analysis is running.
- Returns
- isRunningbool
Whether the analysis is running
- run()¶
Launch the analysis.
- setDistributionsFactories(variableName, distributionsFactories)¶
Set the sequence of distributions to test for a variable.
- Parameters
- variablestr
Name of the variable
- factoriessequence of
openturns.DistributionFactory
Distributions to test
- setInterestVariables(variablesNames)¶
Set the variables to analyse.
- Parameters
- variablesNamessequence of str
Names of the variables to analyse
- setLevel(level)¶
Level accessor.
- Parameters
- levelfloat, , optional
The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.
- property thisown¶
The membership flag