InferenceAnalysis¶
- class persalys.InferenceAnalysis(*args)¶
 Perform a Kolmogorov goodness-of-fit test for 1-D continuous distributions.
- Parameters
 - namestr
 Name
- design
DesignOfExperiment Design of experiments
Examples
>>> import openturns as ot >>> import persalys >>> ot.RandomGenerator.SetSeed(0)
Create the model:
>>> filename = 'data.csv' >>> sample = ot.Normal(3).getSample(100) >>> sample.exportToCSVFile(filename) >>> model = persalys.DataModel('myDataModel', 'data.csv', [0, 1, 2])
Create the Inference Analysis:
>>> analysis = persalys.InferenceAnalysis('analysis', model) >>> analysis.run()
Get the result:
>>> result = analysis.getResult() >>> resultX0 = result.getFittingTestResultForVariable('X0')
- Attributes
 thisownThe membership flag
Methods
Accessor to the object's name.
Design of experiments accessor.
getDistributionsFactories(variableName)Get the sequence of distributions to test for a variable.
Error message accessor.
getId()Accessor to the object's id.
Get the variables to analyse.
getLevel()Level accessor.
getName()Accessor to the object's name.
Physical model accessor.
Result accessor.
Accessor to the object's shadowed id.
Accessor to the object's visibility state.
Warning message accessor.
hasName()Test if the object is named.
Whether the analysis has been run.
Test if the object has a distinguishable name.
Whether the analysis involves reliability.
Whether the analysis is running.
run()Launch the analysis.
setDistributionsFactories(variableName, ...)Set the sequence of distributions to test for a variable.
setInterestVariables(variablesNames)Set the variables to analyse.
setLevel(level)Level accessor.
setName(name)Accessor to the object's name.
setShadowedId(id)Accessor to the object's shadowed id.
setVisibility(visible)Accessor to the object's visibility state.
canBeLaunched
getElapsedTime
getParentObserver
- __init__(*args)¶
 
- getClassName()¶
 Accessor to the object’s name.
- Returns
 - class_namestr
 The object class name (object.__class__.__name__).
- getDesignOfExperiment()¶
 Design of experiments accessor.
- Returns
 - model
DesignOfExperiment Design of experiments
- model
 
- getDistributionsFactories(variableName)¶
 Get the sequence of distributions to test for a variable.
- Parameters
 - variablestr
 Name of the variable
- Returns
 - factoriessequence of 
openturns.DistributionFactory Distributions to test
- factoriessequence of 
 
- getErrorMessage()¶
 Error message accessor.
- Returns
 - messagestr
 Error message if the analysis failed
- getId()¶
 Accessor to the object’s id.
- Returns
 - idint
 Internal unique identifier.
- getInterestVariables()¶
 Get the variables to analyse.
- Returns
 - variablesNamessequence of str
 Names of the variables to analyse
- getLevel()¶
 Level accessor.
- Returns
 - levelfloat, 
, optional
 The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
- levelfloat, 
 
- getName()¶
 Accessor to the object’s name.
- Returns
 - namestr
 The name of the object.
- getPythonScript()¶
 Physical model accessor.
- Returns
 - scriptstr
 Python script to replay the analysis
- getResult()¶
 Result accessor.
- Returns
 - result
InferenceResult Result.
- result
 
- getShadowedId()¶
 Accessor to the object’s shadowed id.
- Returns
 - idint
 Internal unique identifier.
- getVisibility()¶
 Accessor to the object’s visibility state.
- Returns
 - visiblebool
 Visibility flag.
- getWarningMessage()¶
 Warning message accessor.
- Returns
 - messagestr
 Warning message which can appear during the analysis computation
- hasName()¶
 Test if the object is named.
- Returns
 - hasNamebool
 True if the name is not empty.
- hasValidResult()¶
 Whether the analysis has been run.
- Returns
 - hasValidResultbool
 Whether the analysis has already been run
- hasVisibleName()¶
 Test if the object has a distinguishable name.
- Returns
 - hasVisibleNamebool
 True if the name is not empty and not the default one.
- isReliabilityAnalysis()¶
 Whether the analysis involves reliability.
- Returns
 - isReliabilityAnalysisbool
 Whether the analysis involves a reliability analysis
- isRunning()¶
 Whether the analysis is running.
- Returns
 - isRunningbool
 Whether the analysis is running
- run()¶
 Launch the analysis.
- setDistributionsFactories(variableName, distributionsFactories)¶
 Set the sequence of distributions to test for a variable.
- Parameters
 - variablestr
 Name of the variable
- factoriessequence of 
openturns.DistributionFactory Distributions to test
- setInterestVariables(variablesNames)¶
 Set the variables to analyse.
- Parameters
 - variablesNamessequence of str
 Names of the variables to analyse
- setLevel(level)¶
 Level accessor.
- Parameters
 - levelfloat, 
, optional
 The risk of committing a Type I error, that is an incorrect rejection of a true null hypothesis
- levelfloat, 
 
- setName(name)¶
 Accessor to the object’s name.
- Parameters
 - namestr
 The name of the object.
- setShadowedId(id)¶
 Accessor to the object’s shadowed id.
- Parameters
 - idint
 Internal unique identifier.
- setVisibility(visible)¶
 Accessor to the object’s visibility state.
- Parameters
 - visiblebool
 Visibility flag.
- property thisown¶
 The membership flag